Skip to main content

Nanocrystalline Thin Film Gas Sensors

  • Chapter
  • First Online:
Book cover Introduction to Nano

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 3024 Accesses

Abstract

The term sensor comes from the Latin word ‘sentire’ which means to perceive (Sze in Semiconductor sensors. Wiley, New York, 1994 [1]). In electronics sensors are a type of devices that converts some non-electrical input parameter (which we want to measure) into electrical signals having some correlation with the magnitude and nature of the input. Sensors have invaded every sphere of modern industry. In industrial automation, consumer electronics, automobile, space-exploration, medical sector, sensors are everywhere. One of the chief applications of sensors is for the detection of gases and chemical vapors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.M. Sze, Semiconductor Sensors (Wiley, New York, 1994)

    Google Scholar 

  2. R. Jaaniso, O.K. Tan, Semiconductor Gas Sensors (Elsevier, Amsterdam, 2013)

    Google Scholar 

  3. Penguin Dictionary of Electronics, 4th edn. (Penguin, UK, 2005)

    Google Scholar 

  4. A. Sen, Semiconducting oxides in gas sensing. Sci. Cult. 71, 178–184 (2005)

    Google Scholar 

  5. P.T. Mosley, Solid state gas sensors. Meas. Sci. Technol. 8, 223–237 (1997)

    Article  Google Scholar 

  6. N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. Asia 7, 63 (2003)

    Article  Google Scholar 

  7. E. Comini, Metal-oxide nano crystals for gas sensing. Anal. Chim. Acta 568, 28 (2006)

    Article  Google Scholar 

  8. H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, J. Lin, Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett. 86, 243503 (2005)

    Article  Google Scholar 

  9. P. Bhattacharyya, P.K. Basu, H. Saha, S. Basu, Fast response methane sensor based on Pd(Ag)/ZnO/Zn MIM structure. Sensor Lett. 4, 1–6 (2006)

    Article  Google Scholar 

  10. P. Bhattacharyya, P.K. Basu, H. Saha, S. Basu, Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol–gel method. Sens. Actuators B 124, 62–67 (2007)

    Google Scholar 

  11. P.K. Basu, S.K. Jana, H. Saha, S. Basu, Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films. Sens. Actuators B 135, 81–88 (2008)

    Google Scholar 

  12. P. Bhattacharyya, P.K. Basu, N. Mukherjee, A. Mondal, H. Saha, S. Basu, Deposition of nanocrystalline ZnO thin films on p-Si by novel galvanic method and application of the heterojunction as methane sensor. J. Mater. Sci. Mater. Electron. 18, 823–829 (2007)

    Google Scholar 

  13. P.K. Basu, P. Bhattacharyya, N. Saha, H. Saha, S. Basu, Methane sensing properties of platinum catalysed nano porous zinc oxide thin films derived by electrochemical anodization. Sensor Lett. 6, 1–7 (2008)

    Google Scholar 

  14. P. Bhattacharyya, P.K. Basu, B. Mondal, H. Saha, A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane. Microelectron. Reliab. 48, 1772–1779 (2008)

    Article  Google Scholar 

  15. B.S. Kang, Y.W. Heo, L.C. Tien, D.P. Norton, F. Ren, B.P. Gila, S.J. Pearton, Hydrogen and ozone gas sensing using multiple ZnO nanorods. Appl. Phys. A 80, 1029–1032 (2005)

    Article  Google Scholar 

  16. O. Lupan, G. Chai, L. Chow, Fabrication of ZnO nanorod-based hydrogen gas nanosensor. Microelectron. J. 38, 1211–1216 (2007)

    Article  Google Scholar 

  17. H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B. 115, 247–251 (2006)

    Article  Google Scholar 

  18. M.B. Rahmani, S.H. Keshmiri, M. Shafiei, K. Latham, W. Wlodarski, J. du Plessis, K. Kalantar-Zadeh, Transition from n- to p-type of spray pyrolysis deposited Cu doped ZnO thin films for NO2 sensing. Sensor Lett. 7(4), 621–628 (2009)

    Article  Google Scholar 

  19. M. Choudhury, S.S. Nath, D. Chakdar, G. Gope, R.K. Nath, Acetone sensing of ZnO quantum dots embedded in polyvinyl alcohol matrix. Adv. Sci. Lett. 3(1), 6–9 (2010)

    Article  Google Scholar 

  20. T.J. Hsueh, S.J. Chang, Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption. Appl. Phys. Lett. 91, 053111 (2007)

    Article  Google Scholar 

  21. V.R. Shinde, T.P. Gujar, C.D. Lokhande, Enhanced response of porous ZnO nanobeads towards LPG: effect of Pd sensitization. Sens. Actuators B. 123, 701–706 (2007)

    Google Scholar 

  22. C.D. Lokhande, A.M. More, J.L. Gunjakar, Microstructure dependent performance of chemically deposited nanocrystalline metal oxide thin films. J. Alloys Comp. 486, 570–580 (2009)

    Article  Google Scholar 

  23. G.C. Yi, C. Wang, W. Park, ZnO nanorods: synthesis, characterization and applications. Semicond. Sci. Technol. 20, 22–34 (2005)

    Article  Google Scholar 

  24. M. Wang, C.H. Ye, Y. Zhang, G. Min, Synthesis of well-aligned ZnO nanorod arrays with high optical property via a low-temperature solution method. J. Crystal Growth 291, 334–339 (2006)

    Article  Google Scholar 

  25. A. Dev, S. Kar, S. Chakrabarti, S. Chaudhuri, Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route. Nanotechnology 17, 1533–1540 (2006)

    Article  Google Scholar 

  26. T.X. Wang, T.J. Lou, Solvothermal synthesis and photoluminescence properties of ZnO nanorods and nanorod assemblies from ZnO nanoparticles. Mater. Lett. 62, 2329–2331 (2008)

    Article  Google Scholar 

  27. S. Dalui, S.N. Das, R.K. Roy, R.N. Gayen, A.K. Pal, Aligned zinc oxide nanorods by hybrid wet chemical route and their field emission properties. Thin Solid Films 516, 8219–8226 (2008)

    Article  Google Scholar 

  28. A.M. Peiro, J.A. Ayllo, J. Peral, X. Domènech, C. Domingo, Microwave activated chemical bath deposition (MW-CBD) of zinc oxide: influence of bath composition and substrate characteristics. J. Cryst. Growth 285, 6–16 (2005)

    Google Scholar 

  29. D. Patranabis, Sensors and Transducers, 2nd edn. (PHI, India, 2004)

    Google Scholar 

  30. N. Setter, Electroceramic-Based MEMS: Fabrication-Technology and Application (Springer, Berlin, 2006)

    Google Scholar 

  31. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Roles of shape and size of component crystals in semiconductor gas sensors. J. Electrochem. Soc. Jpn 58, 1143 (1990)

    Google Scholar 

  32. A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 95 (2004)

    Google Scholar 

  33. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B. 5, 7 (1991)

    Article  Google Scholar 

  34. http://en.wikipedia.org/methane.html

  35. W.D. Callister, Materials Science and Engineering (Wiley , New York, 2007). ISBN:10:81-265-1076-5

    Google Scholar 

  36. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics. ISBN: 0471478601

    Google Scholar 

  37. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 2007). ISBN: 9971-51-266-1

    Google Scholar 

  38. Z.L. Wang, Nanostructures of Zinc Oxide. Mater. Today, 26–33 (2004)

    Google Scholar 

  39. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, R829–R858 (2004)

    Article  Google Scholar 

  40. H.S. Kim, E.S. Jung, W.J. Lee, J.H. Kim, S.O. Ryu, S.Y. Choi, Effects of oxygen concentration on the electrical properties of ZnO films. Ceram. Int. 34(4), 1097–1101 (2008)

    Article  Google Scholar 

  41. H. Yu, Z. Zhang, M. Han, X. Hao, F. Zhu, A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J. Am. Chem. Soc. 127, 2379 (2005)

    Google Scholar 

  42. P. Mitra, H.S. Maiti, A wet-chemical process to form palladium oxide sensitiser layer on thin film zinc oxide based LPG sensor. Sens. Actuators B. 97, 49–58 (2004)

    Article  Google Scholar 

  43. R.R. Salunkhe, D.S. Dhawale, U.M. Patil, C.D. Lokhande, Improved response of CdO nanorods towards liquefied petroleum gas (LPG): effect of Pd sensitization. Sens. Actuators B. 136, 39–44 (2009)

    Article  Google Scholar 

  44. A. Giannoudakos, T. Agelakopoulou, I. Asteriadis, M. Kompitsas, F. Roubani-Kalantzopoulou, Development and characterization of ZnO, Au/ZnO and Pd/ZnO thin films through their adsorptive and catalytic properties. J. Chromatogr. A. 1187, 216–225 (2008)

    Google Scholar 

  45. N. Mukherjee, S.F. Ahmed, K.K. Chattopadhyay, A. Mondal, Role of solute and solvent on the deposition of ZnO thin films. Electrochim. Acta 54, 4015–4024 (2009)

    Article  Google Scholar 

  46. A. Rottschid, Y. Komem, J. Appl. Phys. 95(11) (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amretashis Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sengupta, A. (2015). Nanocrystalline Thin Film Gas Sensors. In: Sengupta, A., Sarkar, C. (eds) Introduction to Nano. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47314-6_9

Download citation

Publish with us

Policies and ethics