Skip to main content

Fracture Mechanical Behavior of Red Sandstone Containing a Single Fissure and Two Parallel Fissures After Exposure to Different High-Temperature Treatments

  • Chapter
  • First Online:
Strength Failure and Crack Evolution Behavior of Rock Materials Containing Pre-existing Fissures

Part of the book series: Springer Environmental Science and Engineering ((SPRINGERENVIRON))

Abstract

It is well known to us that the stability and safety of deep underground mining excavations and nuclear waste depositories rely on accurate knowledge of the physical and mechanical properties of representative rocks under the action of high temperature (Zhang et al. in Int J Plast 34:93–113, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bell AF, Greenough J, Heap MJ, Main IG (2011a) Challenges for forecasting based on accelerating rates of earthquakes at volcanoes and laboratory analogues. Geophys J Int 185:718–723

    Article  Google Scholar 

  • Bell AF, Naylor M, Heap MJ, Main IG (2011b) Forecasting volcanic eruptions and other material failure phenomena: an evaluation of the failure forecast method. Geophys Res Lett 38: L15304. http://dx.doi.org/10.1029/2011GL048155

  • Benson PM, Thompson AB, Meredith PG, Vinciguerra S, Young RP (2007) Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography. Geophys Res Lett 34:L03303. doi:10.1029/2006GL028721

    Article  Google Scholar 

  • Brantut N, Schubnel A, Guéguen Y (2011) Damage and rupture dynamics at the brittle-ductile transition: the case of gypsum. J Geophys Res 116: B01404 http://dx.doi.org/10.1029/2010JB007675

  • Brotóns V, Tomás R, Alarcón SIJC (2013) Temperature influence on the physical and mechanical properties of a porous rock : san julian’s calcarenite. Eng Geol 167:117–127

    Article  Google Scholar 

  • Chopra PN (1997) High-temperature transient creep in olivine rocks. Tectonophysics 279:93–111

    Article  Google Scholar 

  • Fortin J, Stanchits S, Dresen G, Gueguen Y (2006) Acoustic emission and velocities associated with the formation of compaction bands in sandstone. J Geophys Res 111:B10203. doi:10.1029/2005JB003854

    Article  Google Scholar 

  • Glover PWJ, Baud P, Darot M, Meredith PG, Boon SA, LeRevelec M, Zoussi S, Reuschle T (1995) Phase transition in quartz monitored using acoustic emissions. Geophys J Int 120: 775–782

    Google Scholar 

  • Heap MJ, Baud P, Meredith PG (2009) The influence of temperature on brittle creep in sandstones. Geophys Res Lett 36:L19305. doi:10.1029/2009GL039373

    Article  Google Scholar 

  • Heap MJ, Lavallée Y, Laumann A, Hess K-U, Meredith PG, Dingwell DB (2012) How tough is tuff in the event of fire? Geology 40:311–314

    Article  Google Scholar 

  • Heuze FE (1983) High-temperature mechanical, physical and thermal properties of granitic rocks—a review. Int J Rock Mech Min Sci Geomech Abstr 20:3–10

    Article  Google Scholar 

  • Li JL, Chen X, Dang L, Dong YH, Cheng Z, Guo J (2011) Triaxial unloading test of sandstone after high temperature. Chin J Rock Mech Eng 30: 1587–1595

    Google Scholar 

  • Li YP, Chen LZ, Wang YH (2005) Experimental research on pre-cracked marble under compression. Int J Solids Struct 42:2505–2516

    Article  Google Scholar 

  • Lockner D, Byerlee J, Kuksenko V, Ponomarev A, Sidorin A (1991) Quasi-static fault growth and shear fracture energy in granite. Nature 350:39–42

    Article  Google Scholar 

  • Mao XB, Zhang LY, Li TZ, Liu HS (2009) Properties of failure mode and thermal damage for limestone at high temperature. Min Sci Technol 19:290–294

    Google Scholar 

  • Mollo S, Vinciguerra S, Iezzi G, Iarocci A, Scarlato P, Heap MJ, Dingwell DB (2011) Volcanic edifice weakening via devolatilization reactions. Geophys J Int 186:1073–1077

    Article  Google Scholar 

  • Ranjith PG, Viete DR, Chen BJ, Perera MSA (2012) Transformation plasticity and the effect of temperature on the mechanical behavior of hawkesbury sandstone at atmospheric pressure. Eng Geol 151:120–127

    Article  Google Scholar 

  • Rao QH, Wang Z, Xie HF, Xie Q (2007) Experimental study of properties of sandstone at high temperature. J Cent S Univ Technol (Engl Ed) 14(s1):478–483

    Article  Google Scholar 

  • Somerton WH (1992) Thermal properties and temperature-related behavior of rock/fluid systems. Elsevier, Amsterdam, pp 22–29

    Google Scholar 

  • Tang FR, Mao XB, Zhang LY, Yin HG, Li Y (2011) Effects of strain rates on mechanical properties of limestone under high temperature. Min Sci Technol (China) 21:857–861

    Article  Google Scholar 

  • Tian H, Kempka T, Xu NX, Ziegler M (2012) Physical properties of sandstones after high temperature treatment. Rock Mech Rock Eng 45:1113–1117

    Article  Google Scholar 

  • Tian H, Ziegler M, Kempka T (2014) Physical and mechanical behavior of claystone exposed to temperatures up to 1000 °C. Int J Rock Mech Min Sci 70:144–153

    Google Scholar 

  • Xu XL, Gao F, Shen XM, Xie HP (2008) Mechanical characteristics and microcosmic mechanisms of granite under temperature loads. J China Univ Min Technol 18: 413–417

    Google Scholar 

  • Xu XL, Kang ZX, Ji M, Ge WX, Chen J (2009) Research of microcosmic mechanism of brittle-plastic transition for granite under high temperature. Procedia Earth Planet Sci 1:432–437

    Article  Google Scholar 

  • Wu XY, Baud P, Wong TF (2000) Micromechanics of compressive failure and spatial evolution of anisotropic damage in Darley Dale sandstone. Int J Rock Mech Min Sci 37: 143–160

    Google Scholar 

  • Wu Z, Qin BD, Chen LJ, Luo YJ (2005) Experimental study on mechanical character of sandstone of the upper plank of coal bed under high temperature. Chin J Rock Mech Eng 24: 1863–1867

    Google Scholar 

  • Yang SQ, Jing HW, Huang YH, Ranjith PG, Jiao YY (2014) Fracture mechanical behavior of red sandstone containing a single fissure and two parallel fissures after exposure to different high temperature treatments. J Struct Geol 69(Part A): 245–264

    Google Scholar 

  • Yang SQ, Liu XR, Jing HW (2013) Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Int J Rock Mech Min Sci 63:82–92

    Google Scholar 

  • Ying TB, Li XB, Yin ZQ, Zhou ZL, Liu XL (2012) Study and comparison of mechanical properties of sandstone under static and dynamic loadings after high temperature. Chin J Rock Mech Eng 31: 273e279

    Google Scholar 

  • Yin GZ, Li XS, Zhao HB (2009) Experimental investigation on mechanical properties of coarse sandstone after high temperature under conventional triaxial compression. Chin J Rock Mech Eng 28(3): 598–604

    Google Scholar 

  • Zhang S, Leng W, Zhang F, Xiong Y (2012) A simple thermo-elastoplastic model for geomaterials. Int J Plast 34:93–113

    Article  Google Scholar 

  • Zhang ZX, Yu J, Kou SQ, Lindqvist PA (2001) Effects of high temperature on dynamic rock fracture. Int J Rock Mech Min Sci 38:211–225

    Article  Google Scholar 

  • Zhang LY, Mao XB, Lu AH (2009) Experimental study of on the mechanical properties of rocks at high temperature. Sci China Ser E-Technol Sci 52:641–646

    Article  Google Scholar 

  • Zhao YS, Wan ZJ, Feng ZJ, Yang D, Zhang Y, Qu F (2012) Triaxial compression system for rock testing under high temperature and high pressure. Int J Rock Mech Min Sci 52:132–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Qi Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, SQ. (2015). Fracture Mechanical Behavior of Red Sandstone Containing a Single Fissure and Two Parallel Fissures After Exposure to Different High-Temperature Treatments. In: Strength Failure and Crack Evolution Behavior of Rock Materials Containing Pre-existing Fissures. Springer Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47303-0_7

Download citation

Publish with us

Policies and ethics