Skip to main content

miRNA Electrochemical Detection

  • Chapter
  • First Online:
MicroRNA Detection and Pathological Functions

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 955 Accesses

Abstract

Electrochemical genosensors hold great promise for point-of-care diagnostics and multiplexed platforms for fast, simple, and inexpensive miRNA analysis. A typical electrochemical biosensor consists of an electroactive hybridization indicator and a solid electrode with an immobilized short single-stranded nucleotide probe [1]. Hybridization between the probe and the complementary sequence influences the electrochemical response signal, producing a signal for detection. The electrochemical miRNA detection methods are based on hybridization, which require translating the hybridization event into a measurable signal when hybridization occurs in the sequence. Sensitivity is challenging for the development of high performance electrochemical genosensors, due to the unique characterization of miRNA. In order to implement the detection of the specific target gene down to attomolar to femtomolar level presented in the organism genome, [2] various approaches are continuously being explored for signal amplification to improve the sensitivity.

Xueji Zhang, Fang Xu and Haifeng Dong contributed together to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamidi-Asl E et al (2013) A review on the electrochemical biosensors for determination of microRNAs. Talanta 115:74–83

    Article  CAS  Google Scholar 

  2. Tosar JP, Branas G, Laiz J (2010) Electrochemical DNA hybridization sensors applied to real and complex biological samples. Biosens Bioelectron 26(4):1205–1217

    Article  CAS  Google Scholar 

  3. Gao ZQ, Yang ZC (2006) Detection of microRNAs using electrocatalytic nanoparticle tags. Anal Chem 78(5):1470–1477

    Article  CAS  Google Scholar 

  4. Peng Y, Yi G, Gao Z (2010) A highly sensitive microRNA biosensor based on ruthenium oxide nanoparticle-initiated polymerization of aniline. Chem Commun 46(48):9131–9133

    Article  CAS  Google Scholar 

  5. Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications [J]. Nanomaterials 1(1):31–63

    Google Scholar 

  6. Yang W-J et al (2008) Quantification of microRNA by gold nanoparticle probes. Anal Biochem 376(2):183–188

    Article  CAS  Google Scholar 

  7. Barad O et al (2004) MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14(12):2486–2494

    Article  CAS  Google Scholar 

  8. Wang J et al (2012) Direct quantification of microRNA at low picomolar level in sera of glioma patients using a competitive hybridization followed by amplified voltammetric detection. Anal Chem 84(15):6400–6406

    Article  CAS  Google Scholar 

  9. Yin H et al (2012) Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens Bioelectron 33(1):247–253

    Article  CAS  Google Scholar 

  10. Zhou Y et al (2012) MicroRNA-21 detection based on molecular switching by amperometry. New J Chem 36(10):1985–1991

    Article  CAS  Google Scholar 

  11. Yin H et al (2012) An electrochemical signal ‘off-on’ sensing platform for microRNA detection. Analyst 137(6):1389–1395

    Article  CAS  Google Scholar 

  12. Zhou Y et al (2012) Amplified electrochemical microRNA biosensor using a hemin-G-quadruplex complex as the sensing element. Rsc Advances 2(18):7140–7145

    Article  CAS  Google Scholar 

  13. Meng X et al (2013) Electrochemical determination of microRNA-21 based on bio bar code and hemin/G-quadruplet DNAenzyme. Analyst 138(12):3409–3415

    Article  CAS  Google Scholar 

  14. Xia N et al (2013) Label-free and sensitive strategy for microRNAs detection based on the formation of boronate ester bonds and the dual-amplification of gold nanoparticles. Biosens Bioelectron 47:461–466

    Article  CAS  Google Scholar 

  15. Liu L et al (2014) Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosens Bioelectron 53:399–405

    Article  CAS  Google Scholar 

  16. Xia N et al (2013) Comparing the performances of electrochemical sensors using p-aminophenol redox cycling by different reductants on gold electrodes modified with self-assembled monolayers. Electrochim Acta 109:348–354

    Article  CAS  Google Scholar 

  17. Wu X et al (2013) A novel label-free electrochemical microRNA biosensor using Pd nanoparticles as enhancer and linker. Analyst 138(4):1060–1066

    Article  CAS  Google Scholar 

  18. Dong H et al (2012) Trace and label-free microRNA detection using oligonucleotide encapsulated silver nanoclusters as probes. Anal Chem 84(20):8670–8674

    Article  CAS  Google Scholar 

  19. Peng Y, Gao Z (2011) Amplified detection of MicroRNA based on ruthenium oxide nanoparticle-initiated deposition of an insulating film. Anal Chem 83(3):820–827

    Article  CAS  Google Scholar 

  20. Govindaraj M, Muthukumar M, Raju GB (2010) Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2-coated titanium and graphite anodes. Environ Technol 31(14):1613–1622

    Article  CAS  Google Scholar 

  21. Yang F et al (2011) Determining the behavior of RuOx nanoparticles in mixed-metal oxides: structural and catalytic properties of RuO2/TiO2(110) surfaces. Angewandte Chemie-International Edition 50(43):10198–10202

    Article  CAS  Google Scholar 

  22. Dolatabadi JEN et al (2011) Optical and electrochemical DNA nanobiosensors. Trac-Trends Analy Chem 30(3):459–472

    Article  CAS  Google Scholar 

  23. Dong H et al (2012) Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal Chem 84(10):4587–4593

    Article  CAS  Google Scholar 

  24. Zhu W et al (2014) A label-free and PCR-free electrochemical assay for multiplexed microRNA profiles by ligase chain reaction coupling with quantum dots barcodes. Biosens Bioelectron 53:414–419

    Article  CAS  Google Scholar 

  25. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14

    Article  CAS  Google Scholar 

  26. Peigney A et al (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514

    Article  CAS  Google Scholar 

  27. Kulesza PJ et al (2006) Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures. Electrochim Acta 51(11):2373–2379

    Article  CAS  Google Scholar 

  28. Acevedo DF et al (2008) Fabrication of an interpenetrated network of carbon nanotubes and electroactive polymers to be used in oligonucletide biosensing. Electrochim Acta 53(11):4001–4006

    Article  CAS  Google Scholar 

  29. Tran HV et al (2013) Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron 49:164–169

    Article  CAS  Google Scholar 

  30. Xu Y et al (2004) Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode. Anal Chim Acta 516(1–2):19–27

    Article  CAS  Google Scholar 

  31. Xu Y et al (2006) Impedance DNA biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode. Electroanalysis 18(15):1471–1478

    Article  CAS  Google Scholar 

  32. Cai H et al (2003) Indicator free DNA hybridization detection by impedance measurement based on the DNA-doped conducting polymer film formed on the carbon nanotube modified electrode. Electroanalysis 15(23–24):1864–1870

    Article  CAS  Google Scholar 

  33. Chen H-Y et al (2012) miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 72(14):3631–3641

    Article  CAS  Google Scholar 

  34. Fabbri M et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104(40):15805–15810

    Article  CAS  Google Scholar 

  35. Song E, Choi J-W (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3(3):498–523

    Article  CAS  Google Scholar 

  36. Jaymand M (2013) Recent progress in chemical modification of polyaniline. Prog Polym Sci 38(9):1287–1306

    Article  CAS  Google Scholar 

  37. Hatamzadeh M, Mahyar A, Jaymand M (2012) Chemical modification of polyaniline by N-grafting of polystyrenic chains synthesized via nitroxide-mediated polymerization. J Braz Chem Soc 23(6):1008–1017

    Article  CAS  Google Scholar 

  38. Zhao G-Y, Li H-L (2008) Preparation of polyaniline nanowire arrayed electrodes for electrochemical supercapacitors. Microporous Mesoporous Mater 110(2–3):590–594

    Article  CAS  Google Scholar 

  39. Zhu NN et al (2006) Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization. Electrochim Acta 51(18):3758–3762

    Article  CAS  Google Scholar 

  40. Fan Y et al (2007) Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J Am Chem Soc 129(17):5437–5443

    Article  CAS  Google Scholar 

  41. Bartosik M et al (2014) Magnetic bead-based hybridization assay for electrochemical detection of microRNA. Anal Chim Acta 813:35–40

    Article  CAS  Google Scholar 

  42. Hong C-Y et al (2013) Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers. Biosens Bioelectron 50:132–136

    Article  CAS  Google Scholar 

  43. Degliangeli F, Pompa PP, Fiammengo R (2014) Nanotechnology-based strategies for the detection and quantification of microRNA. Chemistry 20(31):9476–9492

    Article  CAS  Google Scholar 

  44. Zhang G-J et al (2009) Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron 24(8):2504–2508

    Article  CAS  Google Scholar 

  45. Gao Z, Yu YH (2007) Direct labeling microRNA with an electrocatalytic moiety and its application in ultrasensitive microRNA assays. Biosens Bioelectron 22(6):933–940

    Article  CAS  Google Scholar 

  46. Guo L, Chen F (2014) A challenge for miRNA: multiple isomiRs in miRNAomics. Gene 544(1):1–7

    Article  CAS  Google Scholar 

  47. Wen YL et al (2012) DNA nanostructure-based Interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. Sci Rep 2:867

    Google Scholar 

  48. Wang M et al (2014) Signal-on photoelectrochemical biosensor for microRNA detection based on Bi2S3 nanorods and enzymatic amplification. Biosens Bioelectron 53:232–237

    Article  CAS  Google Scholar 

  49. Bettazzi F et al (2013) Electrochemical detection of miRNA-222 by use of a magnetic bead-based bioassay. Anal Bioanal Chem 405(2–3):1025–1034

    Article  CAS  Google Scholar 

  50. Kilic T et al (2012) Electrochemical based detection of microRNA, mir21 in breast cancer cells. Biosens Bioelectron 38(1):195–201

    Article  CAS  Google Scholar 

  51. Pohlmann C, Sprinzl M (2010) Electrochemical detection of microRNAs via gap hybridization assay. Anal Chem 82(11):4434–4440

    Article  Google Scholar 

  52. Zhou Y et al (2014) Investigation of the effect of phytohormone on the expression of microRNA-159a in Arabidopsis thaliana seedlings based on mimic enzyme catalysis systematic electrochemical biosensor. Biosens Bioelectron 54:244–250

    Article  CAS  Google Scholar 

  53. Nasheri N et al (2011) An enzyme-linked assay for the rapid quantification of microRNAs based on the viral suppressor of RNA silencing protein p19. Anal Biochem 412(2):165–172

    Article  CAS  Google Scholar 

  54. Ren YQ, Deng HM, Shen W, Gao ZQ (2013) A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum. Anal Chem 85(9):4784–4789

    Google Scholar 

  55. Kilic T, Topkaya SN, Ozsoz M (2013) A new insight into electrochemical microRNA detection: a molecular caliper, p19 protein. Biosens Bioelectron 48:165–171

    Article  CAS  Google Scholar 

  56. Labib M et al (2013) Three-mode electrochemical sensing of ultralow microRNA levels. J Am Chem Soc 135(8):3027–3038

    Article  CAS  Google Scholar 

  57. Ramnani P et al (2013) Electronic detection of microRNA at attomolar level with high specificity. Anal Chem 85(17):8061–8064

    Article  CAS  Google Scholar 

  58. Labib M et al (2013) Four-way junction formation promoting ultrasensitive electrochemical detection of microRNA. Anal Chem 85(20):9422–9427

    Article  CAS  Google Scholar 

  59. Andresen D, von Nickisch-Rosenegk M, Bier FF (2009) Helicase-dependent amplification: use in OnChip amplification and potential for point-of-care diagnostics. Expert Rev Mol Diag 9(7):645–650

    Article  CAS  Google Scholar 

  60. Jeong Y-J, Park K, Kim D-E (2009) Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell Mol Life Sci 66(20):3325–3336

    Article  CAS  Google Scholar 

  61. Han E-T (2013) Loop-mediated isothermal amplification test for the molecular diagnosis of malaria. Expert Rev Mol Diag 13(2):205–218

    Article  CAS  Google Scholar 

  62. Mori Y, Notomi T (2009) Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 15(2):62–69

    Article  CAS  Google Scholar 

  63. Parida M et al (2008) Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol 18(6):407–421

    Article  CAS  Google Scholar 

  64. Njiru ZK (2012) Loop-mediated isothermal amplification technology: towards point of care diagnostics. Plos Negl Trop Dis 6(6)

    Google Scholar 

  65. Santiago-Felipe S et al (2014) Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis. Anal Chim Acta 811:81–87

    Article  CAS  Google Scholar 

  66. Zhao W et al (2008) Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angewandte Chemie-International Edition 47(34):6330–6337

    Article  CAS  Google Scholar 

  67. Stougaard M et al (2011) Strategies for highly sensitive biomarker detection by Rolling Circle Amplification of signals from nucleic acid composed sensors. Integrative Biology 3(10):982–992

    Article  CAS  Google Scholar 

  68. Demidov VV (2002) Rolling-circle amplification in DNA diagnostics: the power of simplicity. Expert Rev Mol Diag 2(6):542–548

    Article  CAS  Google Scholar 

  69. Kobori T, Takahashi H (2014) Expanding possibilities of rolling circle amplification as a biosensing platform. Anal Sci 30(1):59–64

    Article  CAS  Google Scholar 

  70. Yin B-C, Liu Y-Q, Ye B-C (2012) One-Step, multiplexed fluorescence detection of micrornas based on duplex-specific nuclease signal amplification. J Am Chem Soc 134(11):5064–5067

    Article  CAS  Google Scholar 

  71. Dong H et al (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113(8):6207–6233

    Article  CAS  Google Scholar 

  72. Wang D et al (2013) Molecular beacon structure mediated rolling circle amplification for ultrasensitive electrochemical detection of microRNA based on quantum dots tagging. Electrochem Commun 33:80–83

    Article  CAS  Google Scholar 

  73. Wu X et al (2014) Dual signal amplification strategy for enzyme-free electrochemical detection of microRNAs. Sens Actuators B Chem 203:296–302

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueji Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Zhang, X., Dong, H., Tian, Y. (2015). miRNA Electrochemical Detection. In: MicroRNA Detection and Pathological Functions. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47293-4_4

Download citation

Publish with us

Policies and ethics