Skip to main content

Introduction

  • Chapter
  • First Online:
MicroRNA Detection and Pathological Functions

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 891 Accesses

Abstract

microRNAs (miRNAs) are a class of nonprotein coding RNAs, which play a significant regulated role in a diverse groups of animals, plants, and viruses. The formation of miRNAs is a multiple-step biogenesis process. There have been identified more than 1800 precursors and more than 2500 mature miRNA sequences for the human species, regulating more than two-thirds of genes that code functional proteins. Therefore, miRNAs are promising biomarkers for diagnosis and prognosis of the onset of disease states, providing an attractive pathway in gene therapy for genetic disorders and potential drug targets. However, the detection of miRNA involves great changes due to the characteristics of miRNA including small size, low abundance, and sequence similarity among family members. Besides traditional miRNA detection strategies such as Northern blotting, microarrays, and quantitative RT-PCR (qRT-PCR), various emerging methods including nanomaterials, molecular biological techniques, and surface plasmon resonance (SPR) novel probe design techniques-based miRNA detection are continuously explored for miRNA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Xueji Zhang, Haifeng Dong and Yaping Tian contributed together to this chapter.

References

  1. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) Chem Rev 113:6207–6233. doi:10.1021/cr300362f

    Article  CAS  Google Scholar 

  2. He L, Hannon GJ (2004) Nature Rev Genet 5:522–531. doi:10.1038/nrg1415

    Article  CAS  Google Scholar 

  3. Lee Y, Kim M, Han JJ, Yeom KH, Lee S, Baek SH, Kim VN (2004) EMBO J 23:4051–4060. doi:10.1038/sj.emboj.7600385

    Article  CAS  Google Scholar 

  4. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) Nature 432:235–240. doi:10.1038/nature03120

    Article  CAS  Google Scholar 

  5. Lee Y, Ahn C, Han JJ, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) Nature 425:415–419. doi:10.1038/nature01957

    Article  CAS  Google Scholar 

  6. de Planell-Saguer M, Celina Rodicio M (2013) Clin Biochem 46:869–878. doi:10.1016/j.clinbiochem.2013.02.017

    Article  Google Scholar 

  7. Bohnsack MT, Czaplinski K, Gorlich D (2004) Rna-a Publ of the Rna Soc 10:185–191. doi:10.1261/rna.5167604

    Article  CAS  Google Scholar 

  8. Bartel DP (2009) Cell 136:215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  Google Scholar 

  9. Suzuki HI, Miyazono K (2011) J Biochem 149:15–25. doi:10.1093/jb/mvq113

    Article  CAS  Google Scholar 

  10. Liu X, Fortin K, Mourelatos Z (2008) Brain Pathol 18:113–121. doi:10.1111/j.1750-3639.2007.00121.x

    Article  CAS  Google Scholar 

  11. Krol J, Loedige I, Filipowicz W (2010) Nat Rev Genet 11:597–610. doi:10.1038/nrg2843

    CAS  Google Scholar 

  12. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Genome Res 19:92–105. doi:10.1101/gr.082701.108

    Article  CAS  Google Scholar 

  13. Pritchard CC, Cheng HH, Tewari M (2012) Nat Rev Genet 13:358–369. doi:10.1038/nrg3198

    Article  CAS  Google Scholar 

  14. Small EM, Olson EN (2011) Nature 469:336–342. doi:10.1038/nature09783

    Article  CAS  Google Scholar 

  15. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Cell 113:25–36. doi:10.1016/s0092-8674(03)00231-9

    Article  CAS  Google Scholar 

  16. Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G (2003) Rna-a Publ of the Rna Soc 9:180–186. doi:10.1261/rna.2141503

    Article  CAS  Google Scholar 

  17. Wang Y, Keys DN, Au-Young JK, Chen C (2009) J Cell Physiol 218:251–255. doi:10.1002/jcp.21607

    Article  CAS  Google Scholar 

  18. Xu PZ, Vernooy SY, Guo M, Hay BA (2003) Curr Biol 13:790–795. doi:10.1016/s0960-9822(03)00250-1

    Article  CAS  Google Scholar 

  19. Ambros V (2003) Cell 113:673–676. doi:10.1016/s0092-8674(03)00428-8

    Article  CAS  Google Scholar 

  20. Chen CZ, Li L, Lodish HF, Bartel DP (2004) Science 303:83–86. doi:10.1126/science.1091903

    Article  CAS  Google Scholar 

  21. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Nat Rev Immunol 10:111–122. doi:10.1038/nri2708

    Article  Google Scholar 

  22. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma XS, MacDonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) Nature 432:226–230. doi:10.1038/nature03076

    Article  CAS  Google Scholar 

  23. Greco SJ, Rameshwar P (2007) Proc Natl Acad Sci USA 104:15484–15489. doi:10.1073/pnas.0703037104

    Article  CAS  Google Scholar 

  24. Cheng H-YM, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007) Neuron 54:813–829. doi:10.1016/j.neuron.2007.05.017

    Article  CAS  Google Scholar 

  25. Jopling CL, Yi MK, Lancaster AM, Lemon SM, Sarnow P (2005) Science 309:1577–1581. doi:10.1126/science.1113329

    Article  CAS  Google Scholar 

  26. Eacker SM, Dawson TM, Dawson VL (2009) Nat Rev Neurosci 10:837–841. doi:10.1038/nrn2726

    CAS  Google Scholar 

  27. Cai BZ, Pan ZW, Lu YJ (2010) Curr Med Chem 17:407–411

    Article  CAS  Google Scholar 

  28. Pandey AK, Agarwal P, Kaur K, Datta M (2009) Cell Physiol Biochem 23:221–232. doi:10.1159/000218169

    Article  CAS  Google Scholar 

  29. Saal S, Harvey SJ (2009) Curr Opin Nephrol Hypertens 18:317–323. doi:10.1097/MNH.0b013e32832c9da2

    Article  CAS  Google Scholar 

  30. Chen X-M (2009) World J Gastroenterol 15:1665–1672. doi:10.3748/wjg.15.1665

    Article  CAS  Google Scholar 

  31. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) Cell 120:635–647. doi:10.1016/j.cell.2005.01.014

    Article  CAS  Google Scholar 

  32. Stahlhut Espinosa CE, Slack FJ (2006) The Yale J Biol Med 79:131–140

    Google Scholar 

  33. Kosaka N, Iguchi H, Ochiya T (2010) Cancer Sci 101:2087–2092. doi:10.1111/j.1349-7006.2010.01650.x

    Article  CAS  Google Scholar 

  34. Grosshans H, Filipowicz W (2008) Nature 451:414–416. doi:10.1038/451414a

    Article  CAS  Google Scholar 

  35. Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW (2006) Nature 442:82–85. doi:10.1038/nature04836

    CAS  Google Scholar 

  36. Cissell KA, Shrestha S, Deo SK (2007) Anal Chem 79:4754–4761

    Article  CAS  Google Scholar 

  37. Qavi AJ, Kindt JT, Bailey RC (2010) Anal Bioanal Chem 398:2535–2549. doi:10.1007/s00216-010-4018-8

    Article  CAS  Google Scholar 

  38. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) Genes Dev 17:991–1008. doi:10.1101/gad.1074403

    Article  CAS  Google Scholar 

  39. Yin JQ, Zhao RC, Morris KV (2008) Trends Biotechnol 26:70–76. doi:10.1016/i.tibtech.2007.11.007

    Article  CAS  Google Scholar 

  40. Chapin SC, Appleyard DC, Pregibon DC, Doyle PS (2011) Angewandte Chemie-International Edition 50:2289–2293. doi:10.1002/anie.201006523

    Article  CAS  Google Scholar 

  41. Baker M (2010) Nat Methods 7:687–692. doi:10.1038/nmeth0910-687

    Article  CAS  Google Scholar 

  42. Gao ZQ, Yang ZC (2006) Anal Chem 78:1470–1477. doi:10.1021/ac051726m

    Article  CAS  Google Scholar 

  43. Peng Y, Yi G, Gao Z (2010) Chem Commun 46:9131–9133. doi:10.1039/c0cc01990a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueji Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Zhang, X., Dong, H., Tian, Y. (2015). Introduction. In: MicroRNA Detection and Pathological Functions. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47293-4_1

Download citation

Publish with us

Policies and ethics