Advertisement

The Solar Neighbourhood

  • I. Neill Reid
Chapter
Part of the Saas-Fee Advanced Course book series (SAASFEE, volume 42)

Abstract

The stars currently lying in the immediate vicinity of the Sun are the products of numerous star-forming events spread over a wide-range of Galactic radii and environments within the disc of the Milky Way. As such, these local stars provide a means of assessing global properties, notably the binary fraction, the luminosity function and the initial mass function (IMF), the number of stars forming as a function of mass within a molecular cloud. The IMF is a crucial parameter in understanding galaxy evolution since the relative number of high- and low-mass stars determines what fraction of material is reprocessed and returned to the interstellar medium to enrich new stellar generations, and what fraction is effectively locked up forever in long-lived dwarfs. As discussed in this chapter, most evidence is consistent with the IMF having a universal form, although there are intriguing indications for variations in some extreme environments. These analyses rest on statistical techniques that are susceptible to systematic bias; the appendix to this chapter describes how to estimate the extent of some of those effects, notably Malmquist bias and Lutz-Kelker corrections.

Keywords

Star Formation Mass Function Star Cluster Luminosity Function Galactic Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen, P. R., Koerner, D. W., Reid, I. N., & Trilling, D. E. 2005, ApJ, 625, 385Google Scholar
  2. Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403Google Scholar
  3. Bastian, N., Covey, K. R., & Meyer, M. R. 2010, ARA&A, 48, 339Google Scholar
  4. Bouy, H., Martín, E., Brandner, W., & Bouvier, J. 2005, Astronomische Nachrichten, 326, 969Google Scholar
  5. Burgasser, A. J., Kirkpatrick, J. D., Reid, I. N., et al. 2003, ApJ, 586, 512Google Scholar
  6. Burgasser, A. J., Reid, I. N., Siegler, N., et al. 2007, Protostars and Planets V, ed. B. Reipurth, D. Jewitt & K. Keil, University of Arizona Press, 427Google Scholar
  7. Chabrier, G. 2005, in Astrophysics and Space Science Library, Vol. 327, The Initial Mass Function 50 Years Later, ed. E. Corbelli, F. Palla, & H. Zinnecker, Springer, 41Google Scholar
  8. Chauvin, G., Lagrange, A.-M., Dumas, C., et al. 2004, A&A, 425, L29Google Scholar
  9. Close, L. M., Siegler, N., Freed, M., & Biller, B. 2003, ApJ, 587, 407Google Scholar
  10. Conroy, C. & van Dokkum, P. G. 2012, ApJ, 760, 71Google Scholar
  11. Copeland, H., Jensen, J. O., & Jorgensen, H. E. 1970, A&A, 5, 12Google Scholar
  12. Cox, D. P. & Reynolds, R. J. 1987, ARA&A, 25, 303Google Scholar
  13. Crawford, D. L. 1975, AJ, 80, 955Google Scholar
  14. Daniel, C. & Wood, F. S. 1971, Fitting Equations to Data: Computer Analysis of Multifactor Data for Scientists and Engineers, ed. Daniel, C. and Wood, F. S., New York: WileyGoogle Scholar
  15. Duquennoy, A. & Mayor, M. 1991, A&A, 248, 485Google Scholar
  16. Fischer, D. A. & Marcy, G. W. 1992, ApJ, 396, 178Google Scholar
  17. Frisch, P. C. 2007, Space Sci. Rev., 130, 355Google Scholar
  18. Gates, E. I., Gyuk, G., & Turner, M. S. 1996, Phys. Rev. D, 53, 4138Google Scholar
  19. Goddard, Q. E., Kennicutt, R. C., & Ryan-Weber, E. V. 2010, MNRAS, 405, 2791Google Scholar
  20. Hanson, R. B. 1975, AJ, 80, 379Google Scholar
  21. Hanson, R. B. 1979, MNRAS, 186, 875Google Scholar
  22. Hawley, S. L., Gizis, J. E., & Reid, I. N. 1996, AJ, 112, 2799Google Scholar
  23. Haywood, M. 2002, MNRAS, 337, 151Google Scholar
  24. Henbest, N. & Couper, H. 1994, The Guide to the Galaxy, ed. Henbest, N. and Couper, H., Cambridge University PressGoogle Scholar
  25. Henry, T. J. & McCarthy, Jr., D. W. 1993, AJ, 106, 773Google Scholar
  26. Jahreiß, H. & Gliese, W. 1993, in IAU Symposium, Vol. 156, Developments in Astrometry and their Impact on Astrophysics and Geodynamics, ed. I. I. Mueller & B. Kolaczek, Cambridge University Press, 107Google Scholar
  27. Jahreiß, H. & Wielen, R. 1997, in Astronomische Gesellschaft Abstract Series, Vol. 13, Astronomische Gesellschaft Abstract Series, ed. R. E. Schielicke, 43Google Scholar
  28. Kroupa, P., Tout, C. A., & Gilmore, G. 1993, MNRAS, 262, 545Google Scholar
  29. Kroupa, P. 2001, MNRAS, 322, 231Google Scholar
  30. Luhman, K. L. 2004, ApJ, 617, 1216Google Scholar
  31. Luhman, K. L. 2013, ApJ, 767, L1Google Scholar
  32. Luhman, K. L. 2014, ApJ, 786, L18Google Scholar
  33. Lutz, T. E. & Hanson, R. B. 1992, in Astronomical Society of the Pacific Conference Series, Vol. 25, Astronomical Data Analysis Software and Systems I, ed. D. M. Worrall, C. Biemesderfer, & J. Barnes, 257Google Scholar
  34. Lutz, T. E. & Kelker, D. H. 1973, PASP, 85, 573Google Scholar
  35. Lynden-Bell, D. 1977, in IAU Symposium, Vol. 75, Star Formation, ed. T. de Jong & A. Maeder, Reidel Publishing Company, Dordrecht, 291Google Scholar
  36. Malmquist, K. G. 1922, Jour. Medd. Lund Astron. Obs. Ser. II, 32, 64Google Scholar
  37. Malmquist, K. G. 1925, The Observatory, 48, 142Google Scholar
  38. Marcy, G. W. & Butler, R. P. 2000, PASP, 112, 137Google Scholar
  39. Metchev, S. A., Kirkpatrick, J. D., Berriman, G. B., & Looper, D. 2008, ApJ, 676, 1281Google Scholar
  40. Meurer, G. R., Wong, O. I., Kim, J. H., et al. 2009, ApJ, 695, 765Google Scholar
  41. Miller, G. E. & Scalo, J. M. 1979, ApJS, 41, 513Google Scholar
  42. Nordström, B., Mayor, M., Andersen, J., et al. 2004, A&A, 418, 989Google Scholar
  43. Paczynski, B. 1986, ApJ, 304, 1Google Scholar
  44. Raghavan, D., McAlister, H. A., Henry, T. J., et al. 2010, ApJS, 190, 1Google Scholar
  45. Refsdal, S. 1964, MNRAS, 128, 307Google Scholar
  46. Reggiani, M. M. & Meyer, M. R. 2011, ApJ, 738, 60Google Scholar
  47. Reid, I. N. & Gizis, J. E. 1997, AJ, 113, 2246Google Scholar
  48. Reid, I. N. & Hawley, S. L. 2005, New Light on Dark Stars: Red Dwarfs, Low-Mass Stars, Brown Dwarfs, ed. Reid, I. N. and Hawley, S. L., Springer-PraxisGoogle Scholar
  49. Reid, I. N., Cruz, K. L., Kirkpatrick, J. D., et al. 2008, AJ, 136, 1290Google Scholar
  50. Reid, I. N., Gizis, J. E., & Hawley, S. L. 2002, AJ, 124, 2721Google Scholar
  51. Reid, I. N., Hawley, S. L., & Gizis, J. E. 1995, AJ, 110, 1838Google Scholar
  52. Reid, I. N., Kirkpatrick, J. D., Liebert, J., et al. 1999, ApJ, 521, 613Google Scholar
  53. Reid, N. 1991, AJ, 102, 1428Google Scholar
  54. Reid, N. 1992, MNRAS, 257, 257Google Scholar
  55. Reid, I. N. 1997, AJ, 114, 161Google Scholar
  56. Riedel, A. R., Murphy, S. J., Henry, T. J., et al. 2011, AJ, 142, 104Google Scholar
  57. Salpeter, E. E. 1955, ApJ, 121, 161Google Scholar
  58. Scalo, J. M. 1986, Fund. Cosmic Phys., 11, 1Google Scholar
  59. Schuster, W. J. & Nissen, P. E. 1989, A&A, 222, 69Google Scholar
  60. Smith, R. C. 1983, The Observatory, 103, 29Google Scholar
  61. Stobie, R. S., Ishida, K., & Peacock, J. A. 1989, MNRAS, 238, 709Google Scholar
  62. Sumi, T., Kamiya, K., Bennett, D. P., et al. 2011, Nature, 473, 349Google Scholar
  63. Thies, I. & Kroupa, P. 2007, ApJ, 671, 767Google Scholar
  64. Thilker, D. A., Bianchi, L., Boissier, S., et al. 2005, ApJ, 619, L79Google Scholar
  65. Trimble, V. 2008, The Observatory, 128, 286Google Scholar
  66. van de Kamp, P. & Lippincott, S. L. 1975, Vistas in Astronomy, 19, 225Google Scholar
  67. van de Kamp, P. 1930, Popular Astronomy, 38, 17Google Scholar
  68. van Dokkum, P. G. & Conroy, C. 2011, ApJ, 735, L13Google Scholar
  69. Weidner, C. & Kroupa, P. 2006, MNRAS, 365, 1333Google Scholar
  70. Zinnecker, H. & Yorke, H. W. 2007, ARA&A, 45, 481Google Scholar
  71. Zuckerman, B. & Song, I. 2004, ARA&A, 42, 685Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Space Telescope Science InstituteBaltimoreUSA

Personalised recommendations