Advertisement

Chemomechanical Softening During In Situ Nanoindentation of Anodic Porous Alumina with Anodization Processing

  • Chuan ChengEmail author
Chapter
  • 566 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Plenty of previous investigations mainly focused on using anodic porous alumina as templates for synthesis of other nanomaterials, but less efforts have been made on the mechanical behavior of anodic porous alumina which is also interesting and important.

Keywords

Barrier Layer Anodic Alumina Drift Rate Electric Field Intensity High Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Z. Xia, L. Riester, B.W. Sheldon, W.A. Curtin, J. Liang, A. Yin, J.M. Xu, Rev. Adv. Mater. Sci. 6, 131 (2004)Google Scholar
  2. 2.
    Z. Xia, L. Riester, W.A. Curtin, H. Li, B.W. Sheldon, J. Liang, B. Chang, J.M. Xu, Acta Mater. 52, 931 (2004)CrossRefGoogle Scholar
  3. 3.
    K.Y. Ng, A.H.W. Ngan, Scr. Mater. 66, 439 (2012)CrossRefGoogle Scholar
  4. 4.
    K.Y. Ng, Y. Lin, A.H.W. Ngan, Acta Mater. 57, 2710 (2009)CrossRefGoogle Scholar
  5. 5.
    K.Y. Ng, L. Zuo, A.H.W. Ngan, Scr. Mater. 61, 955 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Wang, A.H.W. Ngan, K.Y. Ng, Scr. Mater. 67, 360 (2012)CrossRefGoogle Scholar
  7. 7.
    C. Cheng, A.H.W. Ngan, J. Appl. Phys. 113, 184903 (2013)CrossRefGoogle Scholar
  8. 8.
    A.C. Fischer-Cripps, Nanoindentation, 2nd edn. (Springer, New York, 2004)CrossRefGoogle Scholar
  9. 9.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
  10. 10.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)CrossRefGoogle Scholar
  11. 11.
    N.G. Chechenin, J. Bottiger, J.P. Krog, Thin Solid Films 261, 228 (1995)CrossRefGoogle Scholar
  12. 12.
    S. Ko, D. Lee, S. Jee, H. Park, K. Lee, W. Hwang, Thin Solid Films 515, 1932 (2006)CrossRefGoogle Scholar
  13. 13.
    A. Barnoush, H. Vehoff, Scr. Mater. 58, 747 (2008)CrossRefGoogle Scholar
  14. 14.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 2003)Google Scholar
  15. 15.
    C. Cheng, A.H.W. Ngan, Electrochim. Acta 56, 9998 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Cheng, K.Y. Ng, A.H.W. Ngan, AIP Adv. 1, 042113 (2011)CrossRefGoogle Scholar
  17. 17.
    J.P. O’Sullivan, G.C. Wood, Proc. Roy. Soc. Lond. A 317, 511 (1970)CrossRefGoogle Scholar
  18. 18.
    V.P. Parkhutik, V.I. Shershulsky, J. Phys. D Appl. Phys. 25, 1258 (1992)CrossRefGoogle Scholar
  19. 19.
    G.K. Singh, A.A. Golovin, I.S. Aranson, Phys. Rev. B 73, 205422 (2006)CrossRefGoogle Scholar
  20. 20.
    J.W. Diggle, T.C. Downie, C.W. Goulding, Chem. Rev. 69, 365 (1969)CrossRefGoogle Scholar
  21. 21.
    M.M. Lohrengel, Mater. Sci. Eng., R 11, 243 (1993)CrossRefGoogle Scholar
  22. 22.
    J.E. Houser, K.R. Hebert, Nat. Mater. 8, 415 (2009)CrossRefGoogle Scholar
  23. 23.
    C. Cherki, J. Siejka, J. Electrochem. Soc. 120, 784 (1973)CrossRefGoogle Scholar
  24. 24.
    J. Siejka, C. Ortega, J. Electrochem. Soc. 124, 883 (1977)CrossRefGoogle Scholar
  25. 25.
    R.E. Smallman, A.H.W. Ngan, Physical Metallurgy and Advanced Materials (Elsevier, Amsterdam, 2007)Google Scholar
  26. 26.
    F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)CrossRefGoogle Scholar
  27. 27.
    R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Lqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler et al., Science 284, 1340 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.The University of Hong KongHong KongChina

Personalised recommendations