Electro-Chemo-Mechanics of Anodic Porous Alumina Nano-Honeycombs: Self-Ordered Growth and Actuation pp 143-160 | Cite as
Chemomechanical Softening During In Situ Nanoindentation of Anodic Porous Alumina with Anodization Processing
Chapter
First Online:
- 566 Downloads
Abstract
Plenty of previous investigations mainly focused on using anodic porous alumina as templates for synthesis of other nanomaterials, but less efforts have been made on the mechanical behavior of anodic porous alumina which is also interesting and important.
Keywords
Barrier Layer Anodic Alumina Drift Rate Electric Field Intensity High Electric Field
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Z. Xia, L. Riester, B.W. Sheldon, W.A. Curtin, J. Liang, A. Yin, J.M. Xu, Rev. Adv. Mater. Sci. 6, 131 (2004)Google Scholar
- 2.Z. Xia, L. Riester, W.A. Curtin, H. Li, B.W. Sheldon, J. Liang, B. Chang, J.M. Xu, Acta Mater. 52, 931 (2004)CrossRefGoogle Scholar
- 3.K.Y. Ng, A.H.W. Ngan, Scr. Mater. 66, 439 (2012)CrossRefGoogle Scholar
- 4.K.Y. Ng, Y. Lin, A.H.W. Ngan, Acta Mater. 57, 2710 (2009)CrossRefGoogle Scholar
- 5.K.Y. Ng, L. Zuo, A.H.W. Ngan, Scr. Mater. 61, 955 (2009)CrossRefGoogle Scholar
- 6.S. Wang, A.H.W. Ngan, K.Y. Ng, Scr. Mater. 67, 360 (2012)CrossRefGoogle Scholar
- 7.C. Cheng, A.H.W. Ngan, J. Appl. Phys. 113, 184903 (2013)CrossRefGoogle Scholar
- 8.A.C. Fischer-Cripps, Nanoindentation, 2nd edn. (Springer, New York, 2004)CrossRefGoogle Scholar
- 9.W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
- 10.W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)CrossRefGoogle Scholar
- 11.N.G. Chechenin, J. Bottiger, J.P. Krog, Thin Solid Films 261, 228 (1995)CrossRefGoogle Scholar
- 12.S. Ko, D. Lee, S. Jee, H. Park, K. Lee, W. Hwang, Thin Solid Films 515, 1932 (2006)CrossRefGoogle Scholar
- 13.A. Barnoush, H. Vehoff, Scr. Mater. 58, 747 (2008)CrossRefGoogle Scholar
- 14.K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 2003)Google Scholar
- 15.C. Cheng, A.H.W. Ngan, Electrochim. Acta 56, 9998 (2011)CrossRefGoogle Scholar
- 16.C. Cheng, K.Y. Ng, A.H.W. Ngan, AIP Adv. 1, 042113 (2011)CrossRefGoogle Scholar
- 17.J.P. O’Sullivan, G.C. Wood, Proc. Roy. Soc. Lond. A 317, 511 (1970)CrossRefGoogle Scholar
- 18.V.P. Parkhutik, V.I. Shershulsky, J. Phys. D Appl. Phys. 25, 1258 (1992)CrossRefGoogle Scholar
- 19.G.K. Singh, A.A. Golovin, I.S. Aranson, Phys. Rev. B 73, 205422 (2006)CrossRefGoogle Scholar
- 20.J.W. Diggle, T.C. Downie, C.W. Goulding, Chem. Rev. 69, 365 (1969)CrossRefGoogle Scholar
- 21.M.M. Lohrengel, Mater. Sci. Eng., R 11, 243 (1993)CrossRefGoogle Scholar
- 22.J.E. Houser, K.R. Hebert, Nat. Mater. 8, 415 (2009)CrossRefGoogle Scholar
- 23.C. Cherki, J. Siejka, J. Electrochem. Soc. 120, 784 (1973)CrossRefGoogle Scholar
- 24.J. Siejka, C. Ortega, J. Electrochem. Soc. 124, 883 (1977)CrossRefGoogle Scholar
- 25.R.E. Smallman, A.H.W. Ngan, Physical Metallurgy and Advanced Materials (Elsevier, Amsterdam, 2007)Google Scholar
- 26.F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)CrossRefGoogle Scholar
- 27.R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Lqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler et al., Science 284, 1340 (1999)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2015