Advertisement

Charge-Induced Reversible Bending in Anodic Porous Alumina–Aluminum Composites

  • Chuan ChengEmail author
Chapter
  • 573 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Electrical energy can be transformed into mechanical energy in materials such as piezoelectric ceramics, electrostrictive polymers, and carbon nanotubes, because the dimensions of these materials can reversibly expand or contract upon cyclic electrical charging. Recently, charge-induced reversible straining was also observed in nanoporous noble metals, such as Pt, Au, and Au–Pt alloys, which are becoming a promising type of electrochemical actuators for potential applications such as artificial muscles.

Keywords

Anodic Voltage Anodic Porous Alumina Anodization Time Electrochemical Double Layer Residual Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Q. Zhang, V. Bharti, X. Zhao, Science 280, 2101 (1998)CrossRefGoogle Scholar
  2. 2.
    R.H. Baughman, Synth. Met. 78, 339 (1996)CrossRefGoogle Scholar
  3. 3.
    R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Lqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler et al., Science 284, 1340 (1999)Google Scholar
  4. 4.
    J. Weissmüller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Würschum, H. Gleiter, Science 300, 312 (2003)CrossRefGoogle Scholar
  5. 5.
    E. Detsi, S. Punzhin, J. Rao, P.R. Onck, J.T.M. De Hosson, ACS Nano 6, 3734 (2012)CrossRefGoogle Scholar
  6. 6.
    H.J. Jin, X.L. Wang, S. Parida, K. Wang, M. Seo, J. Weissmüller, Nano Lett. 10, 187 (2010)CrossRefGoogle Scholar
  7. 7.
    R.H. Baughman, Science 300, 268 (2003)CrossRefGoogle Scholar
  8. 8.
    H.J. Jin, J. Weissmüller, Adv. Eng. Mater. 12, 714 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Ibach, Surf. Sci. Rep. 29, 195 (1997)CrossRefGoogle Scholar
  10. 10.
    J. Weissmüller, J.W. Cahn, Acta Mater. 45, 1899 (1997)CrossRefGoogle Scholar
  11. 11.
    D. Kramer, R.N. Viswanath, J. Weissmüller, Nano Lett. 4, 793 (2004)CrossRefGoogle Scholar
  12. 12.
    W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 5, 741 (2006)CrossRefGoogle Scholar
  13. 13.
    H. Masuda, K. Fukuda, Science 268, 1466 (1995)CrossRefGoogle Scholar
  14. 14.
    H.C. Sin, J. Dong, M. Liu, Adv. Mater. 16, 237 (2004)CrossRefGoogle Scholar
  15. 15.
    M.M. Lohrengel, Mater. Sci. Eng. R 11, 243 (1993)CrossRefGoogle Scholar
  16. 16.
    J.E. Houser, K.R. Hebert, Nat. Mater. 8, 415 (2009)CrossRefGoogle Scholar
  17. 17.
    N. Cabrera, N.F. Mott, Rep. Prog. Phys. 12, 163 (1949)CrossRefGoogle Scholar
  18. 18.
    C. Cheng, A.H.W. Ngan, Appl. Phys. Lett. 102, 213119 (2013)CrossRefGoogle Scholar
  19. 19.
    See online supporting videos of our paper: C. Cheng, A.H.W. Ngan, Appl. Phys. Lett. 102, 213119 (2013)Google Scholar
  20. 20.
    C.K.Y. Ng, A.H.W. Ngan, Chem. Mater. 23, 5264 (2011)CrossRefGoogle Scholar
  21. 21.
    F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)CrossRefGoogle Scholar
  22. 22.
    C. Cheng, A.H.W. Ngan, Electrochim. Acta 56, 9998 (2011)CrossRefGoogle Scholar
  23. 23.
    P. Skeldon, K. Shimizu, G.E. Thompson, G.C. Wood, Surf. Interface Anal. 5, 247 (1983)CrossRefGoogle Scholar
  24. 24.
    Z. Su, W. Zhou, Adv. Mater. 20, 3663 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.The University of Hong KongHong KongChina

Personalised recommendations