Electro-Chemo-Mechanics of Anodic Porous Alumina Nano-Honeycombs: Self-Ordered Growth and Actuation pp 75-87 | Cite as
Experimental Verification II: Substrate Grain Orientation-Dependent Self-ordering
Chapter
First Online:
- 567 Downloads
Abstract
As stated in Chap. 1, recent experiments by Ng and Ngan [1, 2, 3], Beck et al. [4, 5], and Napolskii et al. [6, 7] have indicated a strong influence of the substrate grain orientation on the self-ordering in anodic porous alumina. Anodic porous alumina with straight pore channels grown in a stable, self-ordered manner is formed on (001) oriented Al grains, while disordered porous pattern is formed on (101) oriented Al grains with branched pore channels growing in an unstable manner [1].
Keywords
Radial Distribution Function Pore Channel Porous Alumina Anodic Porous Alumina Anodization Time
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.C.K.Y. Ng, A.H.W. Ngan, Chem. Mater. 23, 5264 (2011)CrossRefGoogle Scholar
- 2.K.Y. Ng, A.H.W. Ngan, Scripta Mater. 66, 439 (2012)CrossRefGoogle Scholar
- 3.K.Y. Ng, Y. Lin, A.H.W. Ngan, Acta Mater. 57, 2710 (2009)CrossRefGoogle Scholar
- 4.G. Beck, R. Bretzler, Mater. Chem. Phys. 128, 383 (2011)CrossRefGoogle Scholar
- 5.G. Beck, K. Retrikowski, Surf. Coat. Tech. 202, 5084 (2008)CrossRefGoogle Scholar
- 6.K.S. Napolskii, I.V. Roslyakov, A.A. Eliseev, D.V. Byelov, A.V. Petukhov, N.A. Grigoryeva, W.G. Bouwman, A.V. Lukashin, A.P. Chumakov, S.V. Grigoriev, J. Phys. Chem. C 115, 23726 (2011)CrossRefGoogle Scholar
- 7.K.S. Napolskii, I.V. Roslyakov, A.Y. Romanchuk, O.O. Kapitanova, A.S. Mankevich, V.A. Lebedev, A.A. Eliseev, J. Mater. Chem. 22, 11922 (2012)CrossRefGoogle Scholar
- 8.C. Cheng, K.Y. Ng, N.R. Aluru, A.H.W. Ngan, J. Appl. Phys. 113, 204903 (2013)CrossRefGoogle Scholar
- 9.H. Chik, J.M. Xu, Mater. Sci. Eng. R 43, 103 (2004)CrossRefGoogle Scholar
- 10.C. Cheng, A.H.W. Ngan, Nanotechnology 24, 215602 (2013)CrossRefGoogle Scholar
- 11.W. Rasband, 2011 ImageJ, release 1.44, NIH: USA (public domain, http://rsb.info.nih.gov/ij/)
- 12.F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)CrossRefGoogle Scholar
- 13.R.E. Smallman, A.H.W. Ngan, Physical Metallurgy and Advanced Materials (Elsevier, Amsterdam, 2007)Google Scholar
- 14.L. Arurault, Trans. Inst. Met. Finish. 86, 51 (2008)CrossRefGoogle Scholar
- 15.J. Siejka, C. Ortega, J. Electrochem. Soc. 124, 883 (1977)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2015