Advertisement

Experimental Verification I: Growth Sustainability of Nanopore Channels Guided with Pre-patterns

  • Chuan ChengEmail author
Chapter
  • 570 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

As mentioned in Chap.  1, although anodic porous alumina has been widely used as templates for fabricating various nanostructured materials, the self-organization mechanism of anodic porous alumina during the growth of nanopore channels, which finally determines the self-ordering quality of the in-plane porous patterns have been under debate for decades.

Keywords

Pore Channel Anodic Porous Alumina Anodization Time Barrier Layer Thickness Anodization Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.P. O’Sullivan, G.C. Wood, Proc. Roy. Soc. Lond. A 317, 511 (1970)CrossRefGoogle Scholar
  2. 2.
    G.E. Thompson, Thin Solid Films 297, 192 (1997)CrossRefGoogle Scholar
  3. 3.
    V.P. Parkhutik, V.I. Shershulsky, J. Phys. D Appl. Phys. 25, 1258 (1992)CrossRefGoogle Scholar
  4. 4.
    G.K. Singh, A.A. Golovin, I.S. Aranson, Phys. Rev. B 73, 205422 (2006)CrossRefGoogle Scholar
  5. 5.
    J.E. Houser, K.R. Hebert, Nature Mater. 8, 415 (2009)CrossRefGoogle Scholar
  6. 6.
    Q. Van Overmeere, F. Blaffart, J. Proost, Electrochem. Comm. 12, 1174 (2010)CrossRefGoogle Scholar
  7. 7.
    C.Y. Liu, A. Datta, N.W. Liu, C.Y. Peng, Y.L. Wang, Appl. Phys. Lett. 84, 2509 (2004)CrossRefGoogle Scholar
  8. 8.
    N.W. Liu, C.Y. Liu, H.H. Wang, C.F. Hsu, M.Y. Lai, T.H. Chuang, Y.L. Wang, Adv. Mater. 20, 2547 (2008)CrossRefGoogle Scholar
  9. 9.
    H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamura, Adv. Mater. 13, 189 (2001)CrossRefGoogle Scholar
  10. 10.
    W. Lee, R. Ji, C.A. Ross, U. Gosele, K. Nielsch, Small 2, 978 (2006)CrossRefGoogle Scholar
  11. 11.
    J.T. Smith, Q. Hang, A. Franklin, D.B. Janes, T.D. Sands, Appl. Phys. Lett. 93, 043108 (2008)CrossRefGoogle Scholar
  12. 12.
    W. Lee, R. Ji, U. Gösele, K. Nielsch, Nature Mater. 5, 741 (2006)CrossRefGoogle Scholar
  13. 13.
    C. Cheng, A.H.W. Ngan, J. Phys. Chem. C 117, 12183 (2013)CrossRefGoogle Scholar
  14. 14.
    F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)CrossRefGoogle Scholar
  15. 15.
    O. Jessensky, F. Müller, U. Gosele, Appl. Phys. Lett. 72, 1173 (1998)CrossRefGoogle Scholar
  16. 16.
    O. Jessensky, F. Müller, U. Gösele, J. Electrochem. Soc. 145, 3735 (1998)CrossRefGoogle Scholar
  17. 17.
    C. Cheng, K.Y. Ng, A.H.W. Ngan, AIP Adv. 1, 042113 (2011)CrossRefGoogle Scholar
  18. 18.
    C.K.Y. Ng, A.H.W. Ngan, Chem. Mater. 23, 5264 (2011)CrossRefGoogle Scholar
  19. 19.
    H. Masuda, K. Fukuda, Science 268, 1466 (1995)CrossRefGoogle Scholar
  20. 20.
    K.S. Napolskii, I.V. Roslyakov, A.Y. Romanchuk, O.O. Kapitanova, A.S. Mankevich, V.A. Lebedev, A.A. Eliseev, J. Mater. Chem. 22, 11922 (2012)CrossRefGoogle Scholar
  21. 21.
    H. Asoh, K. Nishio, M. Nakao, T. Tamamura, H. Masuda, J. Electrochem. Soc. 148, B152 (2001)CrossRefGoogle Scholar
  22. 22.
    Matlab, R2009a, Version 7.8.0.347.The Mathworks Inc. 2009Google Scholar
  23. 23.
    P. Skeldon, K. Shimizu, G.E. Thompson, G.C. Wood, Surf. Interface Anal. 5, 247 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.The University of Hong KongHong KongChina

Personalised recommendations