Advertisement

Numerical Simulation Based on the Established Kinetics Model

  • Chuan ChengEmail author
Chapter
  • 561 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter [1], real-time numerical simulation of two-dimensional (2-D) cross section of pore channel growth in anodic porous alumina is simulated by numerically solving the established kinetics model in Chap.  2.

Keywords

Electric Field Intensity Anodization Voltage Electric Intensity Anodic Porous Alumina Anodization Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Cheng, A.H.W. Ngan, Electrochim. Acta 56, 9998 (2011)CrossRefGoogle Scholar
  2. 2.
    Matlab, R2009a, Version 7.8.0.347. The Mathworks Inc. (2009)Google Scholar
  3. 3.
    G.C. Wood, in Oxide and Oxide Films, vol. 2, ed. by J.W. Diggle (Marcel Dekker, New York, 1973), p. 167Google Scholar
  4. 4.
    J.P. O’Sullivan, G.C. Wood, Proc. Roy. Soc. Lond. A 317, 511 (1970)CrossRefGoogle Scholar
  5. 5.
    P. Tucker, A. Mosquera, NAFEMS Introduction to Grid and Mesh Generation for CFD (NAFEMS, Glasgow, Ref: -R0079)Google Scholar
  6. 6.
    J.E. Houser, K.R. Hebert, J. Electrochem. Soc. 153, B566 (2006)CrossRefGoogle Scholar
  7. 7.
    M.M. Lohrengel, Mater. Sci. Eng. R 11, 243 (1993)CrossRefGoogle Scholar
  8. 8.
    J.W. Diggle, T.C. Downie, C.W. Goulding, Chem. Rev. 69, 365 (1969)CrossRefGoogle Scholar
  9. 9.
    N. Cabrera, N.F. Mott, Rep. Prog. Phys. 12, 163 (1949)CrossRefGoogle Scholar
  10. 10.
    T. Valand, K.E. Heusler, J. Electroanal. Chem. 149, 71 (1983)CrossRefGoogle Scholar
  11. 11.
    V.P. Parkhutik, V.I. Shershulsky, J. Phys. D: Appl. Phys. 25, 1258 (1992)CrossRefGoogle Scholar
  12. 12.
    G. Patermarakis, K. Moussoutzanis, Electrochim. Acta 54, 2434 (2009)CrossRefGoogle Scholar
  13. 13.
    G. Patermarakis, J. Electroanal. Chem. 635, 39 (2009)CrossRefGoogle Scholar
  14. 14.
    G. Patermarakis, J. Chandrinos, K. Masavetas, J. Solid State Electrochem. 11, 1191 (2007)CrossRefGoogle Scholar
  15. 15.
    J. Oh, Ph.D. Thesis, Massachusetts Institute of Technology, 2010Google Scholar
  16. 16.
    W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 5, 741 (2006)CrossRefGoogle Scholar
  17. 17.
    H. Masuda, K. Fukuda, Science 268, 1466 (1995)CrossRefGoogle Scholar
  18. 18.
    Z. Su, W. Zhou, Adv. Mater. 20, 3663 (2008)CrossRefGoogle Scholar
  19. 19.
    C. Cheng, A.H.W. Ngan, J. Appl. Phys. 113, 184903 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Nagayama, K. Tamura, Electrochim. Acta 12, 1097 (1967)CrossRefGoogle Scholar
  21. 21.
    K. Nishio, T. Yanagishita, S. Hatakeyama, H. Maegawa, H. Masuda, J. Vac. Sci. Technol. A B26, L10 (2008)CrossRefGoogle Scholar
  22. 22.
    W. Lee, J.C. Kim, U. Gösele, Adv. Funct. Mater. 20, 21 (2010)Google Scholar
  23. 23.
    D. Lo, R.A. Budiman, J. Electrochem. Soc. 154, C60 (2007)CrossRefGoogle Scholar
  24. 24.
    F. Keller, M.S. Hunter, D.L. Robinson, J. Electrochem. Soc. 100, 441 (1953)CrossRefGoogle Scholar
  25. 25.
    F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)CrossRefGoogle Scholar
  26. 26.
    S. Ono, M. Saito, M. Ishiguro, H. Asoh, J. Electrochem. Soc. 151, B473 (2004)CrossRefGoogle Scholar
  27. 27.
    H. Asoh, K. Nishio, M. Nakao, T. Tamamura, H. Masuda, J. Electrochem. Soc. 148, B152 (2001)CrossRefGoogle Scholar
  28. 28.
    J.P. O’Sullivan, G.C. Wood, Proc. R. Soc. Lond. A 317, 511 (1970)CrossRefGoogle Scholar
  29. 29.
    N.Q. Zhao, X.X. Jiang, C.S. Shi, J.J. Li, Z.G. Zhao, X.W. Du, J. Mater. Sci. 42, 3878 (2007)CrossRefGoogle Scholar
  30. 30.
    T.P. Hoar, J. Yahalom, J. Electrochem. Soc. 110, 614 (1963)Google Scholar
  31. 31.
    J.M. Montero-Moreno, M. Sarret, C. Muller, J. Electrochem. Soc. 154, C169 (2007)CrossRefGoogle Scholar
  32. 32.
    L. Zaraska, G.D. Sulka, J. Szeremeta, M. Jaskula, Electrochim. Acta 55, 4377 (2010)CrossRefGoogle Scholar
  33. 33.
    W. Rasband, ImageJ, release 1.44, NIH: USA (public domain (2011) http://rsb.info.nih.gov/ij/)
  34. 34.
    R. Hillebrand, F. Muller, K. Schwirn, W. Lee, M. Steinhart, ACS Nano 2, 913 (2008)CrossRefGoogle Scholar
  35. 35.
    Q. Van Overmeere, F. Blaffart, J. Proost, Electrochem. Comm. 12, 1174 (2010)CrossRefGoogle Scholar
  36. 36.
    C. Cherki, J. Siejka, J. Electrochem. Soc. 120, 784 (1973)CrossRefGoogle Scholar
  37. 37.
    N.Q. Zhao, X.X. Jiang, C.S. Shi, J.J. Li, Z.G. Zhao, X.W. Du, J. Mater. Sci. 42, 3878 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.The University of Hong KongHong KongChina

Personalised recommendations