Electro-Chemo-Mechanics of Anodic Porous Alumina Nano-Honeycombs: Self-Ordered Growth and Actuation pp 23-35 | Cite as
Establishment of a Kinetics Model
Chapter
First Online:
- 569 Downloads
Abstract
In this chapter, a kinetics model for pore channel growth in anodic porous alumina during anodization is established based on the Laplacian electric potential distribution within the oxide and a continuity equation for current density within the oxide body
Keywords
Electric Field Intensity High Electric Field Coating Ratio Anodic Porous Alumina Mott Equation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.C. Cheng, A.H.W. Ngan, Electrochim. Acta 56, 9998 (2011)CrossRefGoogle Scholar
- 2.J.E. Houser, K.R. Hebert, J. Electrochem. Soc. 153, B566 (2006)CrossRefGoogle Scholar
- 3.J.F. Dewald, Acta. Met. 2, 340 (1954)CrossRefGoogle Scholar
- 4.J.F. Dewald, J. Electrochem. Soc. 102, 1 (1955)CrossRefGoogle Scholar
- 5.D.A. Vermilyea, Acta Met. 1, 282 (1953)CrossRefGoogle Scholar
- 6.V.P. Parkhutik, V.I. Shershulsky, J. Phys. D Appl. Phys. 25, 1258 (1992)CrossRefGoogle Scholar
- 7.S.K. Thamida, H.C. Chang, Chaos 12, 240 (2002)CrossRefGoogle Scholar
- 8.G.K. Singh, A.A. Golovin, I.S. Aranson, V.M. Vinokur, Europhys. Lett. 70, 836 (2005)CrossRefGoogle Scholar
- 9.G.K. Singh, A.A. Golovin, I.S. Aranson, Phys. Rev. B 73, 205422 (2006)CrossRefGoogle Scholar
- 10.J.P. O’Sullivan, G.C. Wood, Proc. R. Soc. Lond. A 317, 511 (1970)CrossRefGoogle Scholar
- 11.G. Patermarakis, J. Electroanal. Chem. 635, 39 (2009)CrossRefGoogle Scholar
- 12.N.Q. Zhao, X.X. Jiang, C.S. Shi, J.J. Li, Z.G. Zhao, X.W. Du, J. Mater. Sci. 42, 3878 (2007)CrossRefGoogle Scholar
- 13.S. Ono, M. Saito, M. Ishiguro, H. Asoh, J. Electrochem. Soc. 151, B473 (2004)CrossRefGoogle Scholar
- 14.A.L. Friedman, D. Brittain, L. Menon, J. Chem. Phys. 127, 154717 (2007)CrossRefGoogle Scholar
- 15.C. Cherki, J. Siejka, J. Electrochem. Soc. 120, 784 (1973)CrossRefGoogle Scholar
- 16.J.A. Davies, B. Domeij, J.P.S. Pringle, F. Brown, J. Electrochem. Soc. 112, 675 (1965)CrossRefGoogle Scholar
- 17.J.A. Davies, B. Domeij, J. Electrochem. Soc. 110, 849 (1963)CrossRefGoogle Scholar
- 18.T.P. Hoar, N.F. Mott, J. Phys. Chem. Solids 9, 97 (1959)CrossRefGoogle Scholar
- 19.T. Valand, K.E. Heusler, J. Electroanal. Chem. 149, 71 (1983)CrossRefGoogle Scholar
- 20.J.W. Diggle, T.C. Downie, C.W. Goulding, Chem. Rev. 69, 365 (1969)CrossRefGoogle Scholar
- 21.K. Nielsch, J. Choi, K. Schwim, R.B. Wehrspohn, U. Gösele, Nano Lett. 2, 677 (2002)CrossRefGoogle Scholar
- 22.J.D. Edwards, F. Keller, Trans. Electrochem. Soc. 79, 180 (1940)Google Scholar
- 23.R.C. Spooner, J. Electrochem. Soc. 102, 156 (1955)CrossRefGoogle Scholar
- 24.M. Nagayama, K. Tamura, Electrochim. Acta 12, 1097 (1967)CrossRefGoogle Scholar
- 25.Z. Wu, C. Richter, L. Menon, J. Electrochem. Soc. 154, E8 (2007)CrossRefGoogle Scholar
- 26.J.L. Whitton, J. Electrochem. Soc. 115, 58 (1968)CrossRefGoogle Scholar
- 27.J. Siejka, C. Ortega, J. Electrochem. Soc. 124, 883 (1977)CrossRefGoogle Scholar
- 28.F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)CrossRefGoogle Scholar
- 29.G.C. Wood, in Oxide and Oxide Films, vol. 2, ed. by J.W. Diggle (Marcel Dekker, New York, 1973), p. 167Google Scholar
- 30.J.W. Diggle, in Oxide and Oxide Films, vol. 2, ed. by J.W. Diggle (Marcel Dekker, New York, 1973), p. 281Google Scholar
- 31.M.M. Lohrengel, Mater. Sci. Eng. R 11, 243 (1993)CrossRefGoogle Scholar
- 32.N. Cabrera, N.F. Mott, Rep. Prog. Phys. 12, 163 (1949)CrossRefGoogle Scholar
- 33.L. Young, Anodic Oxide Films (Academic Press, London, 1961)Google Scholar
- 34.D.A. Vermilyea, J. Electrochem. Soc. 113, 1067 (1966)Google Scholar
- 35.G.A.J. Dorsey, J. Electrochem. Soc. 113, 169 (1966)CrossRefGoogle Scholar
- 36.L. Vecchia, G. Piazzesi, F. Siniscalco, Electrochim. Metal 2, 71 (1967)Google Scholar
- 37.J. Siejka, J.P. Nadai, G. Amsel, J. Electrochem. Soc. 118, 727 (1970)CrossRefGoogle Scholar
- 38.N.B. Pilling, R.E. Bedworth, J. Inst. Metals 29, 529 (1923)Google Scholar
- 39.R.E. Smallman, A.H.W. Ngan, Physical Metallurgy and Advanced Materials (Elsevier, Amsterdam, 2007)Google Scholar
- 40.S. Lee, H.S. White, J. Electrochem. Soc. 151, B479 (2004)CrossRefGoogle Scholar
- 41.J.E. Houser, K.R. Hebert, Phys. Status Solidi (a) 205, 2396 (2008)CrossRefGoogle Scholar
- 42.J.E. Houser, K.R. Hebert, Nat. Mater. 8, 415 (2009)CrossRefGoogle Scholar
- 43.S.J. Garcia-Vergara, T. Hashimoto, P. Skeldon, G.E. Thompson, H. Habazaki, Electrochim. Acta 54, 3662 (2009)CrossRefGoogle Scholar
- 44.S.J. Garcia-Vergara, L. Iglesias-Rubianes, C.E. Blanco-Pinzon, P. Skeldon, G.E. Thompson, P. Campestrini, Proc. R. Soc. A 462, 2345 (2006)CrossRefzbMATHGoogle Scholar
- 45.S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Electrochim. Acta 52, 681 (2006)CrossRefGoogle Scholar
- 46.S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Thin Solid Films 515, 5418 (2007)CrossRefGoogle Scholar
- 47.S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Corros. Sci. 50, 3179 (2008)CrossRefGoogle Scholar
- 48.S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, T. Hashimoto, H. Habazaki, J. Electrochem. Soc. 154, C540 (2007)CrossRefGoogle Scholar
- 49.P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, L. Iglesias-Rubianes, G.E. Blanco-Pinzon, Electrochem. Solid State Lett. 9, B47 (2006)CrossRefGoogle Scholar
- 50.S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Corros. Sci. 49, 3772 (2007)CrossRefGoogle Scholar
- 51.S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Surf. Inerface Anal. 39, 860 (2007)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2015