Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 667 Accesses

Abstract

In this chapter, a kinetics model for pore channel growth in anodic porous alumina during anodization is established based on the Laplacian electric potential distribution within the oxide and a continuity equation for current density within the oxide body

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Cheng, A.H.W. Ngan, Electrochim. Acta 56, 9998 (2011)

    Article  Google Scholar 

  2. J.E. Houser, K.R. Hebert, J. Electrochem. Soc. 153, B566 (2006)

    Article  Google Scholar 

  3. J.F. Dewald, Acta. Met. 2, 340 (1954)

    Article  Google Scholar 

  4. J.F. Dewald, J. Electrochem. Soc. 102, 1 (1955)

    Article  Google Scholar 

  5. D.A. Vermilyea, Acta Met. 1, 282 (1953)

    Article  Google Scholar 

  6. V.P. Parkhutik, V.I. Shershulsky, J. Phys. D Appl. Phys. 25, 1258 (1992)

    Article  Google Scholar 

  7. S.K. Thamida, H.C. Chang, Chaos 12, 240 (2002)

    Article  Google Scholar 

  8. G.K. Singh, A.A. Golovin, I.S. Aranson, V.M. Vinokur, Europhys. Lett. 70, 836 (2005)

    Article  Google Scholar 

  9. G.K. Singh, A.A. Golovin, I.S. Aranson, Phys. Rev. B 73, 205422 (2006)

    Article  Google Scholar 

  10. J.P. O’Sullivan, G.C. Wood, Proc. R. Soc. Lond. A 317, 511 (1970)

    Article  Google Scholar 

  11. G. Patermarakis, J. Electroanal. Chem. 635, 39 (2009)

    Article  Google Scholar 

  12. N.Q. Zhao, X.X. Jiang, C.S. Shi, J.J. Li, Z.G. Zhao, X.W. Du, J. Mater. Sci. 42, 3878 (2007)

    Article  Google Scholar 

  13. S. Ono, M. Saito, M. Ishiguro, H. Asoh, J. Electrochem. Soc. 151, B473 (2004)

    Article  Google Scholar 

  14. A.L. Friedman, D. Brittain, L. Menon, J. Chem. Phys. 127, 154717 (2007)

    Article  Google Scholar 

  15. C. Cherki, J. Siejka, J. Electrochem. Soc. 120, 784 (1973)

    Article  Google Scholar 

  16. J.A. Davies, B. Domeij, J.P.S. Pringle, F. Brown, J. Electrochem. Soc. 112, 675 (1965)

    Article  Google Scholar 

  17. J.A. Davies, B. Domeij, J. Electrochem. Soc. 110, 849 (1963)

    Article  Google Scholar 

  18. T.P. Hoar, N.F. Mott, J. Phys. Chem. Solids 9, 97 (1959)

    Article  Google Scholar 

  19. T. Valand, K.E. Heusler, J. Electroanal. Chem. 149, 71 (1983)

    Article  Google Scholar 

  20. J.W. Diggle, T.C. Downie, C.W. Goulding, Chem. Rev. 69, 365 (1969)

    Article  Google Scholar 

  21. K. Nielsch, J. Choi, K. Schwim, R.B. Wehrspohn, U. Gösele, Nano Lett. 2, 677 (2002)

    Article  Google Scholar 

  22. J.D. Edwards, F. Keller, Trans. Electrochem. Soc. 79, 180 (1940)

    Google Scholar 

  23. R.C. Spooner, J. Electrochem. Soc. 102, 156 (1955)

    Article  Google Scholar 

  24. M. Nagayama, K. Tamura, Electrochim. Acta 12, 1097 (1967)

    Article  Google Scholar 

  25. Z. Wu, C. Richter, L. Menon, J. Electrochem. Soc. 154, E8 (2007)

    Article  Google Scholar 

  26. J.L. Whitton, J. Electrochem. Soc. 115, 58 (1968)

    Article  Google Scholar 

  27. J. Siejka, C. Ortega, J. Electrochem. Soc. 124, 883 (1977)

    Article  Google Scholar 

  28. F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)

    Article  Google Scholar 

  29. G.C. Wood, in Oxide and Oxide Films, vol. 2, ed. by J.W. Diggle (Marcel Dekker, New York, 1973), p. 167

    Google Scholar 

  30. J.W. Diggle, in Oxide and Oxide Films, vol. 2, ed. by J.W. Diggle (Marcel Dekker, New York, 1973), p. 281

    Google Scholar 

  31. M.M. Lohrengel, Mater. Sci. Eng. R 11, 243 (1993)

    Article  Google Scholar 

  32. N. Cabrera, N.F. Mott, Rep. Prog. Phys. 12, 163 (1949)

    Article  Google Scholar 

  33. L. Young, Anodic Oxide Films (Academic Press, London, 1961)

    Google Scholar 

  34. D.A. Vermilyea, J. Electrochem. Soc. 113, 1067 (1966)

    Google Scholar 

  35. G.A.J. Dorsey, J. Electrochem. Soc. 113, 169 (1966)

    Article  Google Scholar 

  36. L. Vecchia, G. Piazzesi, F. Siniscalco, Electrochim. Metal 2, 71 (1967)

    Google Scholar 

  37. J. Siejka, J.P. Nadai, G. Amsel, J. Electrochem. Soc. 118, 727 (1970)

    Article  Google Scholar 

  38. N.B. Pilling, R.E. Bedworth, J. Inst. Metals 29, 529 (1923)

    Google Scholar 

  39. R.E. Smallman, A.H.W. Ngan, Physical Metallurgy and Advanced Materials (Elsevier, Amsterdam, 2007)

    Google Scholar 

  40. S. Lee, H.S. White, J. Electrochem. Soc. 151, B479 (2004)

    Article  Google Scholar 

  41. J.E. Houser, K.R. Hebert, Phys. Status Solidi (a) 205, 2396 (2008)

    Article  Google Scholar 

  42. J.E. Houser, K.R. Hebert, Nat. Mater. 8, 415 (2009)

    Article  Google Scholar 

  43. S.J. Garcia-Vergara, T. Hashimoto, P. Skeldon, G.E. Thompson, H. Habazaki, Electrochim. Acta 54, 3662 (2009)

    Article  Google Scholar 

  44. S.J. Garcia-Vergara, L. Iglesias-Rubianes, C.E. Blanco-Pinzon, P. Skeldon, G.E. Thompson, P. Campestrini, Proc. R. Soc. A 462, 2345 (2006)

    Article  MATH  Google Scholar 

  45. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Electrochim. Acta 52, 681 (2006)

    Article  Google Scholar 

  46. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Thin Solid Films 515, 5418 (2007)

    Article  Google Scholar 

  47. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Corros. Sci. 50, 3179 (2008)

    Article  Google Scholar 

  48. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, T. Hashimoto, H. Habazaki, J. Electrochem. Soc. 154, C540 (2007)

    Article  Google Scholar 

  49. P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, L. Iglesias-Rubianes, G.E. Blanco-Pinzon, Electrochem. Solid State Lett. 9, B47 (2006)

    Article  Google Scholar 

  50. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Corros. Sci. 49, 3772 (2007)

    Article  Google Scholar 

  51. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Surf. Inerface Anal. 39, 860 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Cheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, C. (2015). Establishment of a Kinetics Model. In: Electro-Chemo-Mechanics of Anodic Porous Alumina Nano-Honeycombs: Self-Ordered Growth and Actuation. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47268-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47268-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47267-5

  • Online ISBN: 978-3-662-47268-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics