Skip to main content

Antifibrinolytika–Tranexamsäure und Aprotinin

  • Chapter
  • First Online:
Transfusionsassoziierte Pharmakotherapie

Zusammenfassung

Tranexamsäure (TXA) gewinnt mit zunehmend restriktiverer Transfusionsindikation an Bedeutung. Die randomisierte CRASH-2-Studie an > 20.000 Traumapatienten zeigt eine Reduktion der Mortalität um absolute 1,5% infolge Senkung der blutungsbedingten Letalität; die Letalitätsrate sonstiger Ursachen bleibt unverändert. Wichtig ist eine frühzeitige TXA-Gabe binnen 1 h n. d. Trauma. Meta-Analysen über verschiedene operative Fachgebiete hinweg belegen eine Minderung von Blutverlust/Transfusionsbedarf um relative 30–40%. Topische (Orthopädie) und i.-v.-Gabe erweisen sich als gleich wirksam.

Daten von TXA bei pädiatrischen/juvenilen Patienten sind spärlich. Die Ergebnisse deuten auf eine Minderung von Blutverlust und/oder Transfusionsbedarf hin. Der Einsatz von TXA in der Kindertraumatologie wird aus den Daten der CRASH-2-Studie abgeleitet.

Eingeschränkte Nierenfunktion bedingt abhängig vom Kreatinin-Wert eine Dosisreduktion; eingeschränkte Leberfunktion bedarf keiner Dosisanpassung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Literatur zu Abschnitt 3.2

  1. Hoylaerts, M., Lijnen, H. R., and Collen, D. (1981) Studies on the mechanism of the antifibrinolytic action of tranexamic acid. Biochim. Biophys. Acta 673, 75–85

    Article  CAS  PubMed  Google Scholar 

  2. Castellino, F. J. (1984) Biochemistry of human plasminogen 119. Semin. Thromb. Hemost. 10, 18–23

    Article  CAS  PubMed  Google Scholar 

  3. Dunn, C. J. and Goa, K. L. (1999) Tranexamic acid: a review of its use in surgery and other indications. Drugs 57, 1005–1032

    Article  CAS  PubMed  Google Scholar 

  4. Furtmuller, R., Schlag, M. G., Berger, M., Hopf, R., Huck, S., Sieghart, W., and Redl, H. (2002) Tranexamic acid, a widely used antifibrinolytic agent, causes convulsions by a gamma-aminobutyric acid(A) receptor antagonistic effect. J. Pharmacol. Exp. Ther. 301, 168–173

    Article  CAS  PubMed  Google Scholar 

  5. Schlag, M. G., Hopf, R., Zifko, U., and Redl, H. (2002) Epileptic seizures following cortical application of fibrin sealants containing tranexamic acid in rats. Acta Neurochir. (Wien.) 144, 63–69

    Article  CAS  PubMed  Google Scholar 

  6. Schlag, M. G., Hopf, R., and Redl, H. (2000) Convulsive seizures following subdural application of fibrin sealant containing tranexamic acid in a rat model. Neurosurgery 47, 1463–1467

    Article  CAS  PubMed  Google Scholar 

  7. Kaabachi, O., Eddhif, M., Rais, K., and Zaabar, M. A. (2011) Inadvertent intrathecal injection of tranexamic acid. Saudi. J. Anaesth. 5, 90–92

    Google Scholar 

  8. Mohseni, K., Jafari, A., Nobahar, M. R., and Arami, A. (2009) Polymyoclonus seizure resulting from accidental injection of tranexamic acid in spinal anesthesia. Anesth. Analg. 108, 1984–1986

    Article  CAS  PubMed  Google Scholar 

  9. Yeh, H. M., Lau, H. P., Lin, P. L., Sun, W. Z., and Mok, M. S. (2003) Convulsions and refractory ventricular fibrillation after intrathecal injection of a massive dose of tranexamic acid. Anesthesiology 98, 270–272

    Article  PubMed  Google Scholar 

  10. Reust, D. L., Reeves, S. T., Abernathy, J. H., III, Dixon, J. A., Gaillard, W. F., Mukherjee, R., Koval, C. N., Stroud, R. E., and Spinale, F. G. (2010) Temporally and regionally disparate differences in plasmin activity by tranexamic acid. Anesth. Analg. 110, 694–701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. McCormack, P. L. (2012) Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs 72, 585–617

    Article  CAS  PubMed  Google Scholar 

  12. Dirkmann, D., Gorlinger, K., Gisbertz, C., Dusse, F., and Peters, J. (2012) Factor XIII and tranexamic acid but not recombinant factor VIIa attenuate tissue plasminogen activator-induced hyperfibrinolysis in human whole blood. Anesth. Analg. 114, 11821188

    Article  CAS  Google Scholar 

  13. Fiechtner, B. K., Nuttall, G. A., Johnson, M. E., Dong, Y., Sujirattanawimol, N., Oliver, W. C., Jr., Sarpal, R. S., Oyen, L. J., and Ereth, M. H. (2001) Plasma tranexamic acid concentrations during cardiopulmonary bypass. Anesth. Analg. 92, 1131–1136

    Article  CAS  PubMed  Google Scholar 

  14. Dowd, N. P., Karski, J. M., Cheng, D. C., Carroll, J. A., Lin, Y., James, R. L., and Butterworth, J. (2002) Pharmacokinetics of tranexamic acid during cardiopulmonary bypass. Anesthesiology 97, 390–399

    Article  CAS  PubMed  Google Scholar 

  15. Pilbrant, A., Schannong, M., and Vessman, J. (1981) Pharmacokinetics and bioavailability of tranexamic acid. Eur. J. Clin. Pharmacol. 20, 65–72

    Article  CAS  PubMed  Google Scholar 

  16. Muse, K., Lukes, A. S., Gersten, J., Waldbaum, A., Mabey, R. G., and Trott, E. (2011) Long-term evaluation of safety and health-related quality of life in women with heavy menstrual bleeding treated with oral tranexamic acid. Womens Health (Lond Engl.) 7, 699–707

    CAS  Google Scholar 

  17. Lukes, A. S., Freeman, E. W., Van, D. D., Baker, J., and Adomako, T. L. (2011) Safety of tranexamic acid in women with heavy menstrual bleeding: an open-label extension study. Womens Health (Lond Engl.) 7, 591–598

    CAS  Google Scholar 

  18. Zufferey, P. J., Miquet, M., Quenet, S., Martin, P., Adam, P., Albaladejo, P., Mismetti, P., and Molliex, S. (2010) Tranexamic acid in hip fracture surgery: a randomized controlled trial. Br. J. Anaesth. 104, 23–30

    Article  CAS  PubMed  Google Scholar 

  19. Katsaros, D., Petricevic, M., Snow, N. J., Woodhall, D. D., and Van, B. R. (1996) Tranexamic acid reduces postbypass blood use: a double-blinded, prospective, randomized study of 210 patients. Ann. Thorac. Surg. 61, 1131–1135

    Article  CAS  PubMed  Google Scholar 

  20. Maddali, M. M. and Rajakumar, M. C. (2007) Tranexamic acid and primary coronary artery bypass surgery: a prospective study. Asian Cardiovasc. Thorac. Ann. 15, 313319

    Google Scholar 

  21. Later, A. F., Maas, J. J., Engbers, F. H., Versteegh, M. I., Bruggemans, E. F., Dion, R. A., and Klautz, R. J. (2009) Tranexamic acid and aprotinin in low- and intermediaterisk cardiac surgery: a non-sponsored, double-blind, randomised, placebo-controlled trial. Eur. J. Cardiothorac. Surg. 36, 322–329

    Article  PubMed  Google Scholar 

  22. Camarasa, M. A., Olle, G., Serra-Prat, M., Martin, A., Sanchez, M., Ricos, P., Perez, A., and Opisso, L. (2006) Efficacy of aminocaproic, tranexamic acids in the control of bleeding during total knee replacement: a randomized clinical trial. Br. J. Anaesth. 96, 576–582

    Article  CAS  PubMed  Google Scholar 

  23. Onodera, T., Majima, T., Sawaguchi, N., Kasahara, Y., Ishigaki, T., and Minami, A. (2012) Risk of deep venous thrombosis in drain clamping with tranexamic acid and carbazochrome sodium sulfonate hydrate in total knee arthroplasty. J. Arthroplasty 27, 105–108

    Article  PubMed  Google Scholar 

  24. Charoencholvanich, K. and Siriwattanasakul, P. (2011) Tranexamic acid reduces blood loss and blood transfusion after TKA: a prospective randomized controlled trial. Clin. Orthop. Relat Res. 469, 2874–2880

    Google Scholar 

  25. Kazemi, S. M., Mosaffa, F., Eajazi, A., Kaffashi, M., Daftari, B. L., Bigdeli, M. R., and Zanganeh, R. F. (2010) The effect of tranexamic acid on reducing blood loss in cementless total hip arthroplasty under epidural anesthesia. Orthopedics 33, 17

    Article  PubMed  Google Scholar 

  26. Johansson, T., Pettersson, L. G., and Lisander, B. (2005) Tranexamic acid in total hip arthroplasty saves blood and money: a randomized, double-blind study in 100 patients. Acta Orthop. 76, 314–319

    PubMed  Google Scholar 

  27. Hiippala, S. T., Strid, L. J., Wennerstrand, M. I., Arvela, J. V., Niemela, H. M., Mantyla, S. K., Kuisma, R. P., and Ylinen, J. E. (1997) Tranexamic acid radically decreases blood loss and transfusions associated with total knee arthroplasty. Anesth. Analg. 84, 839–844

    CAS  PubMed  Google Scholar 

  28. Benoni, G. and Fredin, H. (1996) Fibrinolytic inhibition with tranexamic acid reduces blood loss and blood transfusion after knee arthroplasty: a prospective, randomised, double-blind study of 86 patients. J. Bone Joint Surg. Br. 78, 434–440

    CAS  PubMed  Google Scholar 

  29. Wong, J., El, B. H., Rampersaud, Y. R., Lewis, S., Ahn, H., De, S. Y., Abrishami, A., Baig, N., McBroom, R. J., and Chung, F. (2008) Tranexamic Acid reduces perioperative blood loss in adult patients having spinal fusion surgery. Anesth. Analg. 107, 1479–1486

    Article  PubMed  Google Scholar 

  30. Elwatidy, S., Jamjoom, Z., Elgamal, E., Zakaria, A., Turkistani, A., and El-Dawlatly, A. (2008) Efficacy and safety of prophylactic large dose of tranexamic acid in spine surgery: a prospective, randomized, double-blind, placebo-controlled study. Spine (Phila Pa 1976.) 33, 2577–2580

    Article  PubMed  Google Scholar 

  31. Farrokhi, M. R., Kazemi, A. P., Eftekharian, H. R., and Akbari, K. (2011) Efficacy of prophylactic low dose of tranexamic acid in spinal fixation surgery: a randomized clinical trial. J. Neurosurg. Anesthesiol. 23, 290–296

    Article  PubMed  Google Scholar 

  32. Caglar, G. S., Tasci, Y., Kayikcioglu, F., and Haberal, A. (2008) Intravenous tranexamic acid use in myomectomy: a prospective randomized double-blind placebo controlled study. Eur. J. Obstet. Gynecol. Reprod. Biol. 137, 227–231

    Article  CAS  PubMed  Google Scholar 

  33. Crescenti, A., Borghi, G., Bignami, E., Bertarelli, G., Landoni, G., Casiraghi, G. M., Briganti, A., Montorsi, F., Rigatti, P., and Zangrillo, A. (2011) Intraoperative use of tranexamic acid to reduce transfusion rate in patients undergoing radical retropubic prostatectomy: double blind, randomised, placebo controlled trial. BMJ 343, d5701

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Wu, C. C., Ho, W. M., Cheng, S. B., Yeh, D. C., Wen, M. C., Liu, T. J., and P'eng, F. K. (2006) Perioperative parenteral tranexamic acid in liver tumor resection: a prospective randomized trial toward a “blood transfusion”-free hepatectomy. Ann. Surg. 243, 173–180

    Article  PubMed Central  PubMed  Google Scholar 

  35. Gungorduk, K., Yildirim, G., Asicioglu, O., Gungorduk, O. C., Sudolmus, S., and Ark, C. (2011) Efficacy of intravenous tranexamic acid in reducing blood loss after elective cesarean section: a prospective, randomized, double-blind, placebo-controlled study. Am. J. Perinatol. 28, 233–240

    Article  PubMed  Google Scholar 

  36. Lukes, A. S., Moore, K. A., Muse, K. N., Gersten, J. K., Hecht, B. R., Edlund, M., Richter, H. E., Eder, S. E., Attia, G. R., Patrick, D. L., Rubin, A., and Shangold, G. A. (2010) Tranexamic acid treatment for heavy menstrual bleeding: a randomized controlled trial. Obstet. Gynecol. 116, 865–875

    Article  PubMed  Google Scholar 

  37. Preston, J. T., Cameron, I. T., Adams, E. J., and Smith, S. K. (1995) Comparative study of tranexamic acid and norethisterone in the treatment of ovulatory menorrhagia. Br. J. Obstet. Gynaecol. 102, 401–406

    Article  CAS  PubMed  Google Scholar 

  38. Shakur, H., Roberts, I., Bautista, R., Caballero, J., Coats, T., Dewan, Y., El-Sayed, H., Gogichaishvili, T., Gupta, S., Herrera, J., Hunt, B., Iribhogbe, P., Izurieta, M., Khamis, H., Komolafe, E., Marrero, M. A., Mejia-Mantilla, J., Miranda, J., Morales, C., Olaomi, O., Olldashi, F., Perel, P., Peto, R., Ramana, P. V., Ravi, R. R., and Yutthakasemsunt, S. (2010) Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 376, 23–32

    Article  CAS  PubMed  Google Scholar 

  39. Martin, K., Knorr, J., Breuer, T., Gertler, R., MacGuill, M., Lange, R., Tassani, P., and Wiesner, G. (2011) Seizures after open heart surgery: comparison of epsilonaminocaproic acid and tranexamic acid. J. Cardiothorac. Vasc. Anesth. 25, 20–25

    Article  CAS  PubMed  Google Scholar 

  40. Keyl, C., Uhl, R., Beyersdorf, F., Stampf, S., Lehane, C., Wiesenack, C., and Trenk, D. (2011) High-dose tranexamic acid is related to increased risk of generalized seizures after aortic valve replacement. Eur. J. Cardiothorac. Surg. 39, e114–e121

    Article  PubMed  Google Scholar 

  41. Murkin, J. M., Falter, F., Granton, J., Young, B., Burt, C., and Chu, M. (2010) Highdose tranexamic Acid is associated with nonischemic clinical seizures in cardiac surgical patients. Anesth. Analg. 110, 350–353

    Article  CAS  PubMed  Google Scholar 

  42. Sander, M., Spies, C. D., Martiny, V., Rosenthal, C., Wernecke, K. D., and von, H. C. (2010) Mortality associated with administration of high-dose tranexamic acid and aprotinin in primary open-heart procedures: a retrospective analysis. Crit Care 14, R148

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kalavrouziotis, D., Voisine, P., Mohammadi, S., Dionne, S., and Dagenais, F. (2012) High-dose tranexamic acid is an independent predictor of early seizure after cardiopulmonary bypass. Ann. Thorac. Surg. 93, 148–154

    Article  PubMed  Google Scholar 

  44. Casati, V., Romano, A., Novelli, E., and D'Angelo, A. (2010) Tranexamic acid for trauma. Lancet 376, 1049–1050

    Article  PubMed  Google Scholar 

  45. Martin, K., Wiesner, G., Breuer, T., Lange, R., and Tassani, P. (2008) The risks of aprotinin and tranexamic acid in cardiac surgery: a one-year follow-up of 1188 consecutive patients. Anesth. Analg. 107, 1783–1790

    Article  CAS  PubMed  Google Scholar 

  46. Lecker, I., Wang, D. S., Romaschin, A. D., Peterson, M., Mazer, C. D., and Orser, B. A. (2012) Tranexamic acid concentrations associated with human seizures inhibit glycine receptors. J. Clin. Invest 122, 4654–4666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Royston, D. (1992) High-dose aprotinin therapy: a review of the first five years' experience. J. Cardiothorac. Vasc. Anesth. 6, 76–100

    Article  CAS  PubMed  Google Scholar 

  48. Davis, R. and Whittington, R. (1995) Aprotinin. A review of its pharmacology and therapeutic efficacy in reducing blood loss associated with cardiac surgery. Drugs 49, 954–983

    Article  CAS  PubMed  Google Scholar 

  49. Dobkowski, W. B. and Murkin, J. M. (1998) A risk-benefit assessment of aprotinin in cardiac surgical procedures. Drug Saf 18, 21–41

    Article  CAS  PubMed  Google Scholar 

  50. Blauhut, B., Harringer, W., Bettelheim, P., Doran, J. E., Spath, P., and LundsgaardHansen, P. (1994) Comparison of the effects of aprotinin and tranexamic acid on blood loss and related variables after cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 108, 1083–1091

    CAS  PubMed  Google Scholar 

  51. Spannagl, M., Dietrich, W., Beck, A., and Schramm, W. (1994) High dose aprotinin reduces prothrombin and fibrinogen conversion in patients undergoing extracorporeal circulation for myocardial revascularization. Thromb. Haemost. 72, 159–160

    CAS  PubMed  Google Scholar 

  52. Menichetti, A., Tritapepe, L., Ruvolo, G., Speziale, G., Cogliati, A., Di, G. C., Pacilli, M., and Criniti, A. (1996) Changes in coagulation patterns, blood loss and blood use after cardiopulmonary bypass: aprotinin vs tranexamic acid vs epsilon aminocaproic acid. J. Cardiovasc. Surg. (Torino) 37, 401–407

    CAS  Google Scholar 

  53. Rossi, M., Storti, S., Martinelli, L., Varano, C., Marra, R., Zamparelli, R., Possati, G., and Schiavello, R. (1997) A pump-prime aprotinin dose in cardiac surgery: appraisal of its effects on the hemostatic system. J. Cardiothorac. Vasc. Anesth. 11, 835–839

    Article  CAS  PubMed  Google Scholar 

  54. Primack, C., Walenga, J. M., Koza, M. J., Shankey, T. V., and Pifarre, R. (1996) Aprotinin modulation of platelet activation in patients undergoing cardiopulmonary bypass operations. Ann. Thorac. Surg. 61, 1188–1193

    Article  CAS  PubMed  Google Scholar 

  55. Wahba, A., Black, G., Koksch, M., Rothe, G., Preuner, J., Schmitz, G., and Birnbaum, D. E. (1996) Aprotinin has no effect on platelet activation and adhesion during cardiopulmonary bypass. Thromb. Haemost. 75, 844–848

    CAS  PubMed  Google Scholar 

  56. Boldt, J., Zickmann, B., Schindler, E., Welters, A., Dapper, F., and Hempelmann, G. (1994) Influence of aprotinin on the thrombomodulin/protein C system in pediatric cardiac operations. J. Thorac. Cardiovasc. Surg. 107, 1215–1221

    CAS  PubMed  Google Scholar 

  57. Wahba, A., Philip, A., Bauer, M. F., Kaiser, M., Aebert, H., and Birnbaum, D. E. (1995) The blood saving potential of vortex versus roller pump with and without aprotinin. Perfusion 10, 333–341

    Article  CAS  PubMed  Google Scholar 

  58. Hill, G. E., Diego, R. P., Stammers, A. H., Huffman, S. M., and Pohorecki, R. (1998) Aprotinin enhances the endogenous release of interleukin-10 after cardiac operations. Ann. Thorac. Surg. 65, 66–69

    Article  CAS  PubMed  Google Scholar 

  59. Hill, G. E., Pohorecki, R., Alonso, A., Rennard, S. I., and Robbins, R. A. (1996) Aprotinin reduces interleukin-8 production and lung neutrophil accumulation after cardiopulmonary bypass. Anesth. Analg. 83, 696–700

    CAS  PubMed  Google Scholar 

  60. Hill, G. E., Alonso, A., Spurzem, J. R., Stammers, A. H., and Robbins, R. A. (1995) Aprotinin and methylprednisolone equally blunt cardiopulmonary bypass-induced inflammation in humans. J. Thorac. Cardiovasc. Surg. 110, 1658–1662

    Article  CAS  PubMed  Google Scholar 

  61. Diego, R. P., Mihalakakos, P. J., Hexum, T. D., and Hill, G. E. (1997) Methylprednisolone and full-dose aprotinin reduce reperfusion injury after cardiopulmonary bypass. J. Cardiothorac. Vasc. Anesth. 11, 29–31

    Article  CAS  PubMed  Google Scholar 

  62. Rao, P. S., Palazzo, R. S., Bocchieri, K. A., Harlow, G. L., Metz, H. N., Wilson, D. W., Rao, S. K., and Graver, L. M. (1996) Aprotinin protects against myocardial and oxidant formation and endothelial cell damage during open heart surgery. Ann. N. Y. Acad. Sci. 793, 514–516

    Article  CAS  PubMed  Google Scholar 

  63. Broche, V. F., Suarez, A. R., Olembe, E., Fernandez, G. E., Cespedes, E. M., Garcia, J. C., Reynoso, E., Nunez, P., and Prieto, E. (1996) Aprotinin effects related to oxidative stress in cardiosurgery with mechanical cardiorespiratory support (CMCS). Ann. N. Y. Acad. Sci. 793, 521–524

    Article  CAS  PubMed  Google Scholar 

  64. Bruda, N. L., Hurlbert, B. J., and Hill, G. E. (1998) Aprotinin reduces nitric oxide production in vitro and in vivo in a dose-dependent manner. Clin. Sci. (Lond) 94, 505509

    Article  Google Scholar 

  65. Hill, G. E., Taylor, J. A., and Robbins, R. A. (1997) Differing effects of aprotinin and epsilon-aminocaproic acid on cytokine-induced inducible nitric oxide synthase expression. Ann. Thorac. Surg. 63, 74–77

    Article  CAS  PubMed  Google Scholar 

  66. Hayashida, N., Isomura, T., Sato, T., Maruyama, H., Kosuga, K., and Aoyagi, S. (1997) Effects of minimal-dose aprotinin on coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 114, 261–269

    Article  CAS  PubMed  Google Scholar 

  67. Ray, M. J. and Marsh, N. A. (1997) Aprotinin reduces blood loss after cardiopulmonary bypass by direct inhibition of plasmin. Thromb. Haemost. 78, 10211026

    Google Scholar 

  68. Lu, H., Du, B. C., Soria, J., Touchot, B., Chollet, B., Commin, P. L., Conseiller, C., Echter, E., and Soria, C. (1994) Postoperative hemostasis and fibrinolysis in patients undergoing cardiopulmonary bypass with or without aprotinin therapy. Thromb. Haemost. 72, 438–443

    CAS  PubMed  Google Scholar 

  69. Mastroroberto, P., Chello, M., Zofrea, S., and Marchese, A. R. (1995) Suppressed fibrinolysis after administration of low-dose aprotinin: reduced level of plasminalpha2-plasmin inhibitor complexes and postoperative blood loss. Eur. J. Cardiothorac. Surg. 9, 143–145

    Article  CAS  PubMed  Google Scholar 

  70. Dietrich, W., Dilthey, G., Spannagl, M., Jochum, M., Braun, S. L., and Richter, J. A. (1995) Influence of high-dose aprotinin on anticoagulation, heparin requirement, and celite- and kaolin-activated clotting time in heparin-pretreated patients undergoing open-heart surgery. A double-blind, placebo-controlled study. Anesthesiology 83, 679–689

    Article  CAS  PubMed  Google Scholar 

  71. Peters, D. C. and Noble, S. (1999) Aprotinin: an update of its pharmacology and therapeutic use in open heart surgery and coronary artery bypass surgery. Drugs 57, 233–260

    Article  CAS  PubMed  Google Scholar 

  72. Robert, S., Wagner, B. K., Boulanger, M., and Richer, M. (1996) Aprotinin. Ann. Pharmacother. 30, 372–380

    CAS  PubMed  Google Scholar 

  73. Levy, J. H., Bailey, J. M., and Salmenpera, M. (1994) Pharmacokinetics of aprotinin in preoperative cardiac surgical patients. Anesthesiology 80, 1013–1018

    Article  CAS  PubMed  Google Scholar 

  74. Benett-Guerrero, E., Sorohan, J. G., Howell, S. T., Ayuso, L., Cardigan, R. A., Newman, M. F., Mackie, I. J., Reves, J. G., and Mythen, M. G. (1996) Maintenance of therapeutic plasma aprotinin levels during prolonged cardiopulmonary bypass using a large-dose regimen. Anesth. Analg. 83, 1189–1192

    Google Scholar 

  75. Muller, F. O., Schall, R., Hundt, H. K., Groenewoud, G., Ungerer, M. J., Cronje, H. S., and Schumann, F. (1996) Pharmacokinetics of aprotinin in two patients with chronic renal impairment. Br. J. Clin. Pharmacol. 41, 619–620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Weipert, J., Meisner, H., Jochum, M., and Dietrich, W. (1997) Long-term follow-up of aprotinin-specific immunoglobulin G antibodies after cardiac operations. J. Thorac. Cardiovasc. Surg. 114, 676–678

    Article  CAS  PubMed  Google Scholar 

  77. Dietrich, W., Spath, P., Ebell, A., and Richter, J. A. (1997) Prevalence of anaphylactic reactions to aprotinin: analysis of two hundred forty-eight reexposures to aprotinin in heart operations. J. Thorac. Cardiovasc. Surg. 113, 194–201

    Article  CAS  PubMed  Google Scholar 

  78. Diefenbach, C., Abel, M., Limpers, B., Lynch, J., Ruskowski, H., Jugert, F. K., and Buzello, W. (1995) Fatal anaphylactic shock after aprotinin reexposure in cardiac surgery. Anesth. Analg. 80, 830–831

    CAS  PubMed  Google Scholar 

  79. Cottineau, C., Moreau, X., Drouet, M., De Brux, J. L., Brenet, O., and Delhumeau, A. (1993) Anaphylactic shock during the use of high doses of aprotinin in cardiac surgery. Ann. Fr. Anesth. Reanim. 12, 590–593

    Article  CAS  PubMed  Google Scholar 

  80. Dewachter, P., Mouton, C., Masson, C., Gueant, J. L., and Haberer, J. P. (1993) Anaphylactic reaction to aprotinin during cardiac surgery. Anaesthesia 48, 1110–1111

    Article  CAS  PubMed  Google Scholar 

  81. Schulze, K., Graeter, T., Schaps, D., and Hausen, B. (1993) Severe anaphylactic shock due to repeated application of aprotinin in patients following intrathoracic aortic replacement. Eur. J. Cardiothorac. Surg. 7, 495–496

    Article  CAS  PubMed  Google Scholar 

  82. Wuthrich, B., Schmid, P., Schmid, E. R., Tornic, M., and Johansson, S. G. (1992) IgEmediated anaphylactic reaction to aprotinin during anaesthesia. Lancet 340, 173–174

    Article  CAS  PubMed  Google Scholar 

  83. LaFerla, G. A. and Murray, W. R. (1984) Anaphylactic reaction to aprotinin despite negative ocular sensitivity tests. Br. Med. J. (Clin. Res. Ed) 289, 1176–1177

    Article  CAS  Google Scholar 

  84. D'Ambra, M. N., Akins, C. W., Blackstone, E. H., Bonney, S. L., Cohn, L. H., Cosgrove, D. M., Levy, J. H., Lynch, K. E., and Maddi, R. (1996) Aprotinin in primary valve replacement and reconstruction: a multicenter, double-blind, placebocontrolled trial. J. Thorac. Cardiovasc. Surg. 112, 1081–1089

    Article  PubMed  Google Scholar 

  85. Lemmer, J. H., Jr., Dilling, E. W., Morton, J. R., Rich, J. B., Robicsek, F., Bricker, D. L., Hantler, C. B., Copeland, J. G., III, Ochsner, J. L., Daily, P. O., Whitten, C. W., Noon, G. P., and Maddi, R. (1996) Aprotinin for primary coronary artery bypass grafting: a multicenter trial of three dose regimens. Ann. Thorac. Surg. 62, 1659–1667

    Article  PubMed  Google Scholar 

  86. Levy, J. H., Pifarre, R., Schaff, H. V., Horrow, J. C., Albus, R., Spiess, B., Rosengart, T. K., Murray, J., Clark, R. E., and Smith, P. (1995) A multicenter, double-blind, placebo-controlled trial of aprotinin for reducing blood loss and the requirement for donor-blood transfusion in patients undergoing repeat coronary artery bypass grafting. Circulation 92, 2236–2244

    Article  CAS  PubMed  Google Scholar 

  87. Hutton, B., Joseph, L., Fergusson, D., Mazer, C. D., Shapiro, S., and Tinmouth, A. (2012) Risks of harms using antifibrinolytics in cardiac surgery: systematic review and network meta-analysis of randomised and observational studies. BMJ 345, e5798

    Article  PubMed Central  PubMed  Google Scholar 

  88. Brown, J. R., Birkmeyer, N. J., and O'Connor, G. T. (2007) Meta-analysis comparing the effectiveness and adverse outcomes of antifibrinolytic agents in cardiac surgery. Circulation 115, 2801–2813

    Article  CAS  PubMed  Google Scholar 

  89. Lemmer, J. H., Jr., Stanford, W., Bonney, S. L., Breen, J. F., Chomka, E. V., Eldredge, W. J., Holt, W. W., Karp, R. B., Laub, G. W., Lipton, M. J., and. (1994) Aprotinin for coronary bypass operations: efficacy, safety, and influence on early saphenous vein graft patency. A multicenter, randomized, double-blind, placebo-controlled study. J. Thorac. Cardiovasc. Surg. 107, 543–551

    Google Scholar 

  90. Laub, G. W., Riebman, J. B., Chen, C., Adkins, M. S., Anderson, W. A., Fernandez, J., and McGrath, L. B. (1994) The impact of aprotinin on coronary artery bypass graft patency. Chest 106, 1370–1375

    Article  CAS  PubMed  Google Scholar 

  91. Alderman, E. L., Levy, J. H., Rich, J. B., Nili, M., Vidne, B., Schaff, H., Uretzky, G., Pettersson, G., Thiis, J. J., Hantler, C. B., Chaitman, B., and Nadel, A. (1998) Analyses of coronary graft patency after aprotinin use: results from the International Multicenter Aprotinin Graft Patency Experience (IMAGE) trial. J. Thorac. Cardiovasc. Surg. 116, 716–730

    Article  CAS  PubMed  Google Scholar 

  92. Bidstrup, B. P., Underwood, S. R., Sapsford, R. N., and Streets, E. M. (1993) Effect of aprotinin (Trasylol) on aorta-coronary bypass graft patency. J. Thorac. Cardiovasc. Surg. 105, 147–152

    CAS  PubMed  Google Scholar 

  93. Lass, M., Simic, O., and Ostermeyer, J. (1997) Re-graft patency and clinical efficacy of aprotinin in elective bypass surgery. Cardiovasc. Surg. 5, 604–607

    Article  CAS  PubMed  Google Scholar 

  94. Brown, J. R., Birkmeyer, N. J., and O'Connor, G. T. (2006) Aprotinin in cardiac surgery. N. Engl. J. Med. 354, 1953–1957

    Article  PubMed  Google Scholar 

  95. Mangano, D. T., Tudor, I. C., and Dietzel, C. (2006) The risk associated with aprotinin in cardiac surgery. N. Engl. J. Med. 354, 353–365

    Article  CAS  PubMed  Google Scholar 

  96. Breuer, T., Martin, K., Wilhelm, M., Wiesner, G., Schreiber, C., Hess, J., Lange, R., and Tassani, P. (2009) The blood sparing effect and the safety of aprotinin compared to tranexamic acid in paediatric cardiac surgery. Eur. J. Cardiothorac. Surg. 35, 167171

    Article  Google Scholar 

  97. Szekely, A., Sapi, E., Breuer, T., Kertai, M. D., Bodor, G., Vargha, P., and Szatmari, A. (2008) Aprotinin and renal dysfunction after pediatric cardiac surgery. Paediatr. Anaesth. 18, 151–159

    Article  PubMed  Google Scholar 

  98. Martin, K., Breuer, T., Gertler, R., Hapfelmeier, A., Schreiber, C., Lange, R., Hess, J., and Wiesner, G. (2011) Tranexamic acid versus epsilon-aminocaproic acid: efficacy and safety in paediatric cardiac surgery. Eur. J. Cardiothorac. Surg. 39, 892–897

    Article  PubMed  Google Scholar 

  99. Pasquali, S. K., Li, J. S., He, X., Jacobs, M. L., O'Brien, S. M., Hall, M., Jaquiss, R. D., Welke, K. F., Peterson, E. D., Shah, S. S., and Jacobs, J. P. (2012) Comparative analysis of antifibrinolytic medications in pediatric heart surgery. J. Thorac. Cardiovasc. Surg. 143, 550–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Adler Ma, S. C., Brindle, W., Burton, G., Gallacher, S., Hong, F. C., Manelius, I., Smith, A., Ho, W., Alston, R. P., and Bhattacharya, K. (2011) Tranexamic acid is associated with less blood transfusion in off-pump coronary artery bypass graft surgery: a systematic review and meta-analysis. J. Cardiothorac. Vasc. Anesth. 25, 2635

    Article  CAS  Google Scholar 

  101. Weber, C. F., Gorlinger, K., Byhahn, C., Moritz, A., Hanke, A. A., Zacharowski, K., and Meininger, D. (2011) Tranexamic acid partially improves platelet function in patients treated with dual antiplatelet therapy. Eur. J. Anaesthesiol. 28, 57–62

    Article  PubMed  Google Scholar 

  102. Roberts, I., Shakur, H., Afolabi, A., Brohi, K., Coats, T., Dewan, Y., Gando, S., Guyatt, G., Hunt, B. J., Morales, C., Perel, P., Prieto-Merino, D., and Woolley, T. (2011) The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet 377, 1096–101, 1101

    Google Scholar 

  103. CRASH-2 Collaborators (2011) Effect of tranexamic acid in traumatic brain injury: a nested randomised, placebo controlled trial (CRASH-2 Intracranial Bleeding Study). BMJ 343, d3795

    Google Scholar 

  104. Dewan, Y., Komolafe, E. O., Mejia-Mantilla, J. H., Perel, P., Roberts, I., and Shakur, H. (2012) CRASH-3 - tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebocontrolled trial. Trials 13, 87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Dhawale, A. A., Shah, S. A., Sponseller, P. D., Bastrom, T., Neiss, G., Yorgova, P., Newton, P. O., Yaszay, B., Abel, M. F., Shufflebarger, H., Gabos, P. G., Dabney, K. W., and Miller, F. (2012) Are antifibrinolytics helpful in decreasing blood loss and transfusions during spinal fusion surgery in children with cerebral palsy scoliosis? Spine (Phila Pa 1976.) 37, E549–E555

    Article  PubMed  Google Scholar 

  106. Zufferey, P., Merquiol, F., Laporte, S., Decousus, H., Mismetti, P., Auboyer, C., Samama, C. M., and Molliex, S. (2006) Do antifibrinolytics reduce allogeneic blood transfusion in orthopedic surgery? Anesthesiology 105, 1034–1046

    Article  PubMed  Google Scholar 

  107. Kagoma, Y. K., Crowther, M. A., Douketis, J., Bhandari, M., Eikelboom, J., and Lim, W. (2009) Use of antifibrinolytic therapy to reduce transfusion in patients undergoing orthopedic surgery: a systematic review of randomized trials. Thromb. Res. 123, 687696

    Article  CAS  Google Scholar 

  108. Dalmau, A., Sabate, A., Acosta, F., Garcia-Huete, L., Koo, M., Sansano, T., Rafecas, A., Figueras, J., Jaurrieta, E., and Parrilla, P. (2000) Tranexamic acid reduces red cell transfusion better than epsilon-aminocaproic acid or placebo in liver transplantation. Anesth. Analg. 91, 29–34

    CAS  PubMed  Google Scholar 

  109. Warnaar, N., Mallett, S. V., Klinck, J. R., de Boer, M. T., Rolando, N., Burroughs, A. K., Jamieson, N. V., Rolles, K., and Porte, R. J. (2009) Aprotinin and the risk of thrombotic complications after liver transplantation: a retrospective analysis of 1492 patients. Liver Transpl. 15, 747–753

    Article  PubMed  Google Scholar 

  110. Dalmau, A., Sabate, A., Koo, M., Bartolome, C., Rafecas, A., Figueras, J., and Jaurrieta, E. (2004) The prophylactic use of tranexamic acid and aprotinin in orthotopic liver transplantation: a comparative study. Liver Transpl. 10, 279–284

    Article  PubMed  Google Scholar 

  111. Molenaar, I. Q., Warnaar, N., Groen, H., Tenvergert, E. M., Slooff, M. J., and Porte, R. J. (2007) Efficacy and safety of antifibrinolytic drugs in liver transplantation: a systematic review and meta-analysis. Am. J. Transplant. 7, 185–194

    Article  CAS  PubMed  Google Scholar 

  112. Massicotte, L., Denault, A. Y., Beaulieu, D., Thibeault, L., Hevesi, Z., and Roy, A. (2011) Aprotinin versus tranexamic acid during liver transplantation: impact on blood product requirements and survival. Transplantation 91, 1273–1278

    Article  PubMed  Google Scholar 

  113. Ickx, B. E., Van der Linden, P. J., Melot, C., Wijns, W., de, P. L., Vandestadt, J., Hut, F., and Pradier, O. (2006) Comparison of the effects of aprotinin and tranexamic acid on blood loss and red blood cell transfusion requirements during the late stages of liver transplantation. Transfusion 46, 595–605

    Article  CAS  PubMed  Google Scholar 

  114. Gurusamy, K. S., Pissanou, T., Pikhart, H., Vaughan, J., Burroughs, A. K., and Davidson, B. R. (2011) Methods to decrease blood loss and transfusion requirements for liver transplantation. Cochrane. Database. Syst. Rev. CD009052

    Google Scholar 

  115. Gai, M. Y., Wu, L. F., Su, Q. F., and Tatsumoto, K. (2004) Clinical observation of blood loss reduced by tranexamic acid during and after caesarian section: a multicenter, randomized trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 112, 154–157

    Article  CAS  PubMed  Google Scholar 

  116. Ferrer, P., Roberts, I., Sydenham, E., Blackhall, K., and Shakur, H. (2009) Anti-fibrinolytic agents in post partum haemorrhage: a systematic review. BMC. Pregnancy. Childbirth. 9, 29

    Google Scholar 

  117. Desai, P. H., Kurian, D., Thirumavalavan, N., Desai, S. P., Ziu, P., Grant, M., White, C., Landis, R. C., and Poston, R. S. (2009) A randomized clinical trial investigating the relationship between aprotinin and hypercoagulability in off-pump coronary surgery. Anesth. Analg. 109, 1387–1394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Yang, H., Zheng, S., and Shi, C. (2001) Clinical study on the efficacy of tranexamic acid in reducing postpartum blood lose: a randomized, comparative, multicenter trial. Zhonghua Fu Chan Ke. Za Zhi. 36, 590–592

    CAS  Google Scholar 

  119. Novikova, N. and Hofmeyr, G. J. (2010) Tranexamic acid for preventing postpartum haemorrhage. Cochrane. Database. Syst. Rev. CD007872

    Google Scholar 

  120. Ducloy-Bouthors, A. S., Jude, B., Duhamel, A., Broisin, F., Huissoud, C., Keita-Meyer, H., Mandelbrot, L., Tillouche, N., Fontaine, S., Le, G. F., pret-Mosser, S., Vallet, B., and Susen, S. (2011) High-dose tranexamic acid reduces blood loss in postpartum haemorrhage. Crit Care 15, R117

    Article  PubMed Central  PubMed  Google Scholar 

  121. Roos, Y. B., Rinkel, G. J., Vermeulen, M., Algra, A., and van, G. J. (2003) Antifibrinolytic therapy for aneurysmal subarachnoid haemorrhage. Cochrane. Database. Syst. Rev. CD001245

    Google Scholar 

  122. Roos, Y. (2000) Antifibrinolytic treatment in subarachnoid hemorrhage: a randomized placebo-controlled trial. STAR Study Group. Neurology 54, 77–82

    Article  CAS  PubMed  Google Scholar 

  123. Hillman, J., Fridriksson, S., Nilsson, O., Yu, Z., Saveland, H., and Jakobsson, K. E. (2002) Immediate administration of tranexamic acid and reduced incidence of early rebleeding after aneurysmal subarachnoid hemorrhage: a prospective randomized study. J. Neurosurg. 97, 771–778

    Article  CAS  PubMed  Google Scholar 

  124. Starke, R. M., Kim, G. H., Fernandez, A., Komotar, R. J., Hickman, Z. L., Otten, M. L., Ducruet, A. F., Kellner, C. P., Hahn, D. K., Chwajol, M., Mayer, S. A., and Connolly, E. S., Jr. (2008) Impact of a protocol for acute antifibrinolytic therapy on aneurysm rebleeding after subarachnoid hemorrhage 206. Stroke 39, 2617–2621

    Article  CAS  PubMed  Google Scholar 

  125. Harrigan, M. R., Rajneesh, K. F., Ardelt, A. A., and Fisher, W. S., III (2010) Short-term antifibrinolytic therapy before early aneurysm treatment in subarachnoid hemorrhage: effects on rehemorrhage, cerebral ischemia, and hydrocephalus. Neurosurgery 67, 935–939

    Article  PubMed  Google Scholar 

  126. Ortmann, E., Besser, M. W., and Klein, A. A. (2013) Antifibrinolytic agents in current anaesthetic practice. Br. J. Anaesth. 111, 549–563

    Article  CAS  PubMed  Google Scholar 

  127. Karkouti, K., Beattie, W. S., Dattilo, K. M., McCluskey, S. A., Ghannam, M., Hamdy, A., Wijeysundera, D. N., Fedorko, L., and Yau, T. M. (2006) A propensity score casecontrol comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery. Transfusion 46, 327–338

    Article  CAS  PubMed  Google Scholar 

  128. Furnary, A. P., Wu, Y., Hiratzka, L. F., Grunkemeier, G. L., and Page, U. S., III (2007) Aprotinin does not increase the risk of renal failure in cardiac surgery patients. Circulation 116, I127–I133

    Google Scholar 

  129. Mangano, D. T., Miao, Y., Vuylsteke, A., Tudor, I. C., Juneja, R., Filipescu, D., Hoeft, A., Fontes, M. L., Hillel, Z., Ott, E., Titov, T., Dietzel, C., and Levin, J. (2007) Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA 297, 471–479

    Article  CAS  PubMed  Google Scholar 

  130. Schneeweiss, S., Seeger, J. D., Landon, J., and Walker, A. M. (2008) Aprotinin during coronary-artery bypass grafting and risk of death. N. Engl. J. Med. 358, 771–783

    Article  CAS  PubMed  Google Scholar 

  131. Fergusson, D. A., Hebert, P. C., Mazer, C. D., Fremes, S., MacAdams, C., Murkin, J. M., Teoh, K., Duke, P. C., Arellano, R., Blajchman, M. A., Bussieres, J. S., Cote, D., Karski, J., Martineau, R., Robblee, J. A., Rodger, M., Wells, G., Clinch, J., and Pretorius, R. (2008) A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N. Engl. J. Med. 358, 2319–2331

    Article  CAS  PubMed  Google Scholar 

  132. McMullan, V. and Alston, R. P. (2013) III. Aprotinin and cardiac surgery: a sorry tale of evidence misused. Br. J. Anaesth. 110, 675–678

    Article  CAS  PubMed  Google Scholar 

  133. Howell, N., Senanayake, E., Freemantle, N., and Pagano, D. (2013) Putting the record straight on aprotinin as safe and effective: results from a mixed treatment metaanalysis of trials of aprotinin. J. Thorac. Cardiovasc. Surg. 145, 234–240

    Article  CAS  PubMed  Google Scholar 

  134. Ferraris, V. A. (2013) Facts, opinions, and conclusions: aprotinin brings out all of these. J. Thorac. Cardiovasc. Surg. 145, 240–242

    Article  PubMed  Google Scholar 

  135. Walkden, G. J., Verheyden, V., Goudie, R., and Murphy, G. J. (2013) Increased perioperative mortality following aprotinin withdrawal: a real-world analysis of blood management strategies in adult cardiac surgery. Intensive Care Med. 39, 1808–1817

    Article  PubMed  Google Scholar 

  136. Royston, D. (2015) The current place of aprotinin in the management of bleeding 1. Anaesthesia 70 Suppl 1, 46–e17

    Article  CAS  PubMed  Google Scholar 

  137. Mannucci, P. M. (1998) Hemostatic drugs. N. Engl. J Med. 339, 245–253

    CAS  Google Scholar 

  138. Despotis, G. J., Avidan, M. S., and Hogue, C. W., Jr. (2001) Mechanisms and attenuation of hemostatic activation during extracorporeal circulation. Ann. Thorac. Surg. 72, S1821–S1831

    Google Scholar 

  139. Segal, H. and Hunt, B. J. (2000) Aprotinin: pharmacological reduction of perioperative bleeding. Lancet 355, 1289–1290

    Article  CAS  PubMed  Google Scholar 

Literatur zu Abschnitt 3.3

  1. Ahlberg A, Eriksson O, Kjellman H. Diffusion of tranexamic acid to the joint. Acta Orthop Scand. 1976;47:486–8

    Article  CAS  PubMed  Google Scholar 

  2. Alshryda S, Sarda P, Sukeik M, Nargol A, Blenkinsopp J, Mason JM. Tranexamic acid in total knee replacement: a systematic review and meta-analysis. J Bone Joint Surg Br. 2011;93:1577–85

    Article  CAS  PubMed  Google Scholar 

  3. Alshryda S, Mason J, Vaghela M, Sarda P, Nargol A, Maheswaran S, Tulloch C, Anand S, Logishetty R, Stothart B, NMC(ENB), NCFE, Hungin APS. Topical (Intra-Articular) Tranexamic Acid Reduces Blood Loss and Transfusion Rates Following Total Knee Replacement. A Randomized Controlled Trial (TRANX-K). J Bone Joint Surg Am. 2013;95:1961–8

    Article  PubMed  Google Scholar 

  4. Alshryda S, Mason S, Sarda P, Nargol A, Nick Cooke N, Ahmad H, Tang S, Logishetty R, Vaghela M, McPartlin L, Hungin APS. Topical (Intra-Articular) Tranexamic Acid Reduces Blood Loss and Transfusion Rates Following Total Hip Replacement..A Randomized Controlled Trial (TRANX-H). J Bone Joint Surg Am. 2013;95:1969–74

    Article  PubMed  Google Scholar 

  5. Alshryda S, Mason JM, Sarda P, Lou T, Stanley M, Wu J, Unsworth A. The effect of tranexamic acid on artificial joint materials: a biomechanical study (the bioTRANX study). J Orthop Traumatol. 2014 Aug 5. [Epub ahead of print] PMID: 25091616

    Google Scholar 

  6. Alshryda S, Sukeik M, Sarda P, Blenkinsopp J, Haddad FS, Mason JM. A systematic review and meta-analysis of the topical administration of tranexamic acid in total hip and knee replacement. Bone Joint J. 2014;96-B:1005–15

    Article  CAS  PubMed  Google Scholar 

  7. AWMF Leitlinien der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG) Interdisziplinäre Expertengruppe „Diagnostik und Therapie peripartaler Blutungen“ (Erstellungsdatum 06/2008)

    Google Scholar 

  8. AWMF (http://www.awmf.org/fileadmin/user_upload/Leitlinien/041_D_Interdisziplinaere_V_fuer_Schmerztherapie/041-004g_S3_Fibromyalgiesyndrom_2012-04.pdf) (Zugriff 24.07.2014)

  9. Baharoglu MI, Germans MR, Rinkel GJ, Algra A, Vermeulen M, van Gijn J, Roos YB. Antifibrinolytic therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2013 Aug 30;8:CD001245

    PubMed  Google Scholar 

  10. Beno S, Ackery AD, Callum J, Rizoli S. Tranexamic acid in pediatric trauma: why not? Critical Care 2014;18:313. 10.1186/cc13965 (http://ccforum.com/content/18/4/313.)

    Google Scholar 

  11. http://www.bfarm.de/SiteGlobals/Forms/Suche/Servicefunktionsuche_Formular.html;jsessionid ? 3996FF9E7EA35EAF6A02F20E7C424D49.1_cid350?nn ? 4691330&resourceId ? 3496612&input_?5760296&pageLocale?de & templateQueryString?aprotinin (Zugriff am 17.01.2015)

  12. http://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RV_STP/stp-aprotinin-neu.html (Zugriff am 17.01.2015)

  13. http://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RV_STP/stp-tranexams%C3%A4ure-neu.html (Zugriff am 17.01.2015)

  14. BfArm (http://www.bfarm.de/DE/Arzneimittel/zul/kam/pdWS/empfehlungen/docs/tranexamsaeure.html) (Zugriff am 18.08.2014)

  15. BfArm (http://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Pharmakovigilanz/Risikoinformationen/RisikoBewVerf/tranexamsaeure_bescheid_20121218.pdf?__blob?publicationFile & v ? 1) (Zugriff am 18.08.2014)

  16. BfArm (http://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Pharmakovigilanz/Risikoinformationen/RisikoBewVerf/aprotinin_bescheid_20131111.pdf?__blob?publicationFile&v ? 3).)

  17. BfArm (http://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Pharmakovigilanz/Risikoinformationen/RisikoBewVerf/tranexamsaeure_ke_annex.pdf?__blob?publicationFile&v ? 1) (Zugriff 28.06.2014)

  18. Bidolegui F, Arce G, Lugones A, Pereira S, Vindver G. Tranexamic Acid Reduces Blood Loss and Transfusion in Patients Undergoing Total Knee Arthroplasty without Tourniquet: A Prospective Randomized Controlled Trial. Open Orthop J. 2014 Jul 11;8:250–4. doi: 10.2174/1874325001408010250. eCollection 2014

    Article  PubMed Central  PubMed  Google Scholar 

  19. Breau RH, Kokolo MB, Punjani N, Cagiannos I, Beck A, Niznick N, Buenaventura C, Cowan J, Knoll G, Momoli F, Morash C, Ruzicka M, Schachkina S, Tinmouth A, Xie HY, Fergusson DA. The effects of lysine analogs during pelvic surgery: a systematic review and meta-analysis. Transfus Med Rev. 2014;28:145–55

    Article  PubMed  Google Scholar 

  20. CD: Cochrane Glossar: (http://www.cohrane.de/de/cochrane-glossar) (Zugriff 27.07.2014)

  21. CL: EbM-Tutorial der Cochrane Library (http://www.medizinalrat.de/Eb_Medicine/EbM_-_Theorie_und_Handwerkszeu/ebm_-_theorie_und_handwerkszeu6.html) Zugriff 13.09.2014)

  22. Craik JD, Ei Shafie SA, Kidd AG, Twyman RS. Can local administration of tranexamic acid during total knee arthroplasty reduce blood loss and transfusion requirements in the absence of surgical drains? Eur J Orthop Surg Traumatol. 2014;24:379–84

    Article  PubMed  Google Scholar 

  23. CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376: 23–32. Published Online June 15, 2010 DOI:10.1016/S0140-6736(10)60835-5)

    Google Scholar 

  24. CRASH-2 collaborators. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. (www.thelancet.com Published Online March 24, 2011. DOI:10.1016/S0140-6736(11)60278-X))

  25. CRD: Centre for Review and Dissemination

    Google Scholar 

  26. (http://www.crd.york.ac.uk/CRDWeb/ResultsPage.asp?Active_Results_Tab?0&DatabaseID?0&PageNumber?1&RecordsPerPage?20&SearchSessionID?1603074&LineID?1509022&SearchFor?%28tranexamic+acid%29+IN+DARE%2C+NHSEED%2C+HTA+&SearchXML?%26amp%3Blt%3Badvanced%26amp%3Bgt%3B%26amp%3Blt%3Bsearchfor+field%3D%26amp%3Bgt%3B%28tranexamic+acid%29+IN+DARE%2C+NHSEED%2C+HTA+%26amp%3Blt%3B%2Fsearchfor%26amp%3Bgt%3B%26amp%3Blt%3B%2Fadvanced%26amp%3Bgt%3B&UserID?0&ShowPreviews?0&ShowPubmed?0&SearchSortField?0&SearchSortDirection?1&ShowSelected?0)

  27. Crescenti A, Borghi G, Bignami E, Bertarelli G, Landoni G, Casiraghi GM, Alberto Briganti A, Montorsi F, Rigatti P, Zangrillo A. Intraoperative use of tranexamic acid to reduce transfusion rate in patients undergoing radical retropubic prostatectomy: double blind, randomised, placebo controlled trial. BMJ 2011;343:d5701 doi: 10.1136/bmj.d5701

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Curry N, Hopewell S, Doree C, Hyde C, Brohi K, Stanworth S. The acute management of trauma hemorrhage: a systematic review of randomized controlled trials. Critical Care 2011;15:R92

    Article  PubMed Central  PubMed  Google Scholar 

  29. Dadure C, Sauter M, Bringuier S, Bigorre M, Raux O, Rochette A, Canaud N, Capdevila X. Intraoperative tranexamic acid reduces blood transfusion in children undergoing craniosynostosis surgery: a randomized double-blind study. Anesthesiology. 2011;114:856–61

    Article  CAS  PubMed  Google Scholar 

  30. Ducloy-Bouthors AS, BJude B, Duhamel A, Broisin F, Huissoud C, Keita-Meyer H, Mandelbrot L, Tillouche N, Fontaine S, Le Goueff F, Depret-Mosser S, Vallet B, for The EXADELI Study Group, Susen, S. High-dose tranexamic acid reduces blood loss in postpartum haemorrhage. Critical Care 2011, 15:R117 (http://ccforum.com/content/15/2/R117)

  31. EbMN: (http://www.ebm-netzwerk.de/pdf/zahnsplitter/22.pdf) (Zugriff 29.08.2014)

  32. Fu DJ, Chen C, Guo L, Yang L. Use of intravenous tranexamic acid in total knee arthroplasty: a meta-analysis of randomized controlled trials. Chin J Traumatol. 2013;16:67–76

    PubMed  Google Scholar 

  33. Gaberel T, Magheru C, Emery E, Derlon JM. Antifibrinolytic therapy in the management of aneurismal subarachnoid hemorrhage revisited. A meta-analysis Acta Neurochirurgica 2012;154:1–9

    Google Scholar 

  34. Gaillard S, Dupuis-Girod S, Boutitie F, Rivière S, Morinière S, Hatron PY, Manfredi G, Kaminsky P, Capitaine AL, Roy P, Gueyffier F, Plauchu H; ATERO Study Group. Tranexamic acid for epistaxis in hereditary hemorrhagic telangiectasia patients: a European cross-over controlled trial in a rare disease. J Thromb Haemost. 2014;12:1494–502

    Article  CAS  Google Scholar 

  35. Gandhi R1, Evans HM, Mahomed SR, Mahomed NN. Tranexamic acid and the reduction of blood loss in total knee and hip arthroplasty: a meta-analysis. BMC Res Notes. 2013;6:184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Geisthoff UW, Seyfert UT, Kübler M, Bieg B, Plinkert PK, König J. Treatment of epistaxis in hereditary hemorrhagic telangiectasia with tranexamic acid - a double-blind placebo-controlled cross-over phase IIIB study. Thromb Res. 2014;134:565–71

    Article  CAS  PubMed  Google Scholar 

  37. Gillette BP, Maradit Kremers H, Duncan CM, Smith HM, Trousdale RT, Pagnano MW, Sierra RJ. Economic impact of tranexamic acid in healthy patients undergoing primary total hip and knee arthroplasty. J Arthroplasty. 2013;28(8 Suppl):137–9

    Article  PubMed  Google Scholar 

  38. Gluud LL, Klingenberg SL, Langholz E. Tranexamic acid for upper gastrointestinal bleeding. Cochrane Database of Systematic Reviews 2012, Issue 1. Art. No.: CD006640. DOI: 10.1002/14651858.CD006640.pub2

    Google Scholar 

  39. Goobie SM, Meier PM, Pereira LM, McGowan FX, Prescilla RP, Scharp LA, Rogers GF, Proctor MR, Meara JG, Soriano SG, Zurakowski D, Sethna NF. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology. 2011;114:862–71

    Article  CAS  PubMed  Google Scholar 

  40. Goobie SM, Meier PM, Sethna NF, Soriano SG, Zurakowski D, Samant S, Pereira LM. Population pharmacokinetics of tranexamic acid in paediatric patients undergoing craniosynostosis surgery. Clin Pharmacokinet. 2013;52:267–76

    Article  CAS  PubMed  Google Scholar 

  41. Guerriero C, Cairns J, Perel P, Shakur H, Roberts I; CRASH 2 trial collaborators. Cost-effectiveness analysis of administering tranexamic acid to bleeding trauma patients using evidence from the CRASH-2 trial. PLoS One. 2011;6(5):e18987. doi: 10.1371/journal.pone.0018987

    Google Scholar 

  42. Gurusamy KS, Li J, Sharma D, Davidson BR. Pharmacological interventions to decrease blood loss and blood transfusion requirements for liver resection. Cochrane Database Syst Rev. 2009 Oct 7;(4):CD008085. doi: 10.1002/14651858.CD008085. Review.)

    Google Scholar 

  43. Gurusamy KS, Pissanou T, Pikhart H, Vaughan J, Burroughs AK, Davidson BR. Methods to decrease blood loss and transfusion requirements for liver transplantation. Cochrane Database Syst Rev. 2011 Dec 7;(12):CD009052. doi: 10.1002/14651858.CD009052.pub2. Review.)

    Google Scholar 

  44. Handbook Cochrane Org.: http://handbook.cochrane.org/chapter_9/9_2_3_2_the_standardized_mean_difference.htm

  45. Heesen M, Böhmer J, Klöhr S, Rossaint R, VAN DE Velde M, Dudenhausen JW, Straube S. Prophylactic tranexamic acid in parturients at low risk for post-partum haemorrhage: systematic review and meta-analysis. Acta Anaesthesiol Scand. 2014;58:1075–85

    Article  CAS  PubMed  Google Scholar 

  46. Henry DA, Carless PA, Moxey AJ, O’Connell D, Stokes BJ, Fergusson DA, Ker K. Anti-fibrinolytic use for minimizing perioperative allogeneic blood transfusion. Cochrane Database of Systematic Reviews 2011, Issue 3. Art. No.: CD001886. DOI:10.1002/14651858.CD001886.pub4

    Google Scholar 

  47. Ho KM, Ismail H. Use of intravenous tranexamic acid to reduce allogeneic blood transfusion in tota hip and knee arthroplasty: a meta-analysis. Anaesth Intensive Care. 2003;31:529–37

    CAS  PubMed  Google Scholar 

  48. Huang F, Wu D, Ma G, Yin Z, Wang Q. The use of tranexamic acid to reduce blood loss and transfusion in major orthopedic surgery: a meta-analysis. J Surg Res. 2014;186:318–27

    Article  CAS  PubMed  Google Scholar 

  49. Howes JP, Sharma V, Cohen AT. Tranexamic acid reduces blood loss after knee arthroplasty. J Bone Joint Surg Br. 1996;78:995–6

    Article  CAS  PubMed  Google Scholar 

  50. HZ: Horten Zentrum für praxisorientierte Forschung und Wissenstransfer. (http://www.evimed.ch/glossar/) (Zugriff 27.07.2014)

  51. Irisson E, Hémon Y, Pauly V, Parratte S, Argenson JN, Kerbaul F. Tranexamic acid reduces blood loss and financial cost in primary total hip and knee replacement surgery. Orthop Traumatol Surg Res. 2012;98:477–83

    Article  CAS  PubMed  Google Scholar 

  52. Johansson T, Pettersson LG, Lisander B. Tranexamic acid in total hip arthroplasty saves blood and money. A randomized, double-blind study in 100 patients. Acta Orthopaedica 2005;6:314–19

    Google Scholar 

  53. Ker K, Kiriya J, Perel P, Edwards P, Shakur H, Roberts I. Avoidable mortality from giving tranexamic acid to bleeding trauma patients: an estimation based on WHO mortality data, a systematic literature review and data from the CRASH-2 trial. BMC Emergency Medicine 2012, 12:3. (http://www.biomedcentral.com/1471-227X/12/3)

  54. Ker K, Edwards P, Perel P, Shakur H, Roberts I. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. BMJ. 2012 May 17;344:e3054

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Ker K, Prieto-Merino D, Roberts I. Systematic review, meta-analysis and meta-regression of the effect of tranexamic acid on surgical blood loss. Br J Surg. 2013;100:1271–9

    Article  CAS  PubMed  Google Scholar 

  56. Ker K, Beecher D, Roberts I. Topical application of tranexamic acid for the reduction of bleeding. Cochrane Database Syst Rev. 2013 Jul 23;7:CD010562

    PubMed  Google Scholar 

  57. Kim TK, Chang CB, Koh IJ. Practical issues for the use of tranexamic acid in total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2014;22:1849–58

    Article  PubMed  Google Scholar 

  58. Lethaby A, Farquhar C, Cooke I. Antifibrinolytics for heavy menstrual bleeding. Cochrane Database of Systematic Reviews 2000, Issue 4. Art. No.: CD000249. DOI: 10.1002/14651858.CD000249

    Google Scholar 

  59. Lethaby A, Duckitt K, Farquhar C. Non-steroidal anti-inflammatory drugs for heavy menstrual bleeding. Cochrane Database of Systematic Reviews 2013, Issue 1. Art. No.: CD000400. DOI: 10.1002/14651858.CD000400.pub3

    Google Scholar 

  60. Levine BR, Haughom BD, Belkin MN, Goldstein ZH. Weighted versus uniform dose of tranexamic acid in patients undergoing primary, elective knee arthroplasty: a prospective randomized controlled trial. J Arthroplasty. 2014;29(9 Suppl):186–8

    Article  PubMed  Google Scholar 

  61. Levy JH. Antifibrinolytic therapy: new data and new concepts. Lancet 2010;376:3–4

    Article  PubMed  Google Scholar 

  62. Lier H. Transfusionsmamagement bei Notfall- und Massivtransfusionen. 6.3 Klinische Praxis. In: Singbartl G, Walther-Wenke G. Transfusionspraxis. 2. Aufl. Springer 2014. S. 89–109

    Google Scholar 

  63. Maniar RN, Kumar G, Singhi T, Nayak RM, Maniar PR. Most effective regimen of tranexamic acid in knee arthroplasty: a prospective randomized controlled study in 240 patients. Clin Orthop Relat Res. 2012;470:2605–12

    Article  PubMed Central  PubMed  Google Scholar 

  64. Matteson KA, Rahn DD, Wheeler TL 2nd, Casiano E, Siddiqui NY, Harvie HS, Mamik MM, Balk EM, Sung VW; Society of Gynecologic Surgeons Systematic Review Group. Nonsurgical management of heavy menstrual bleeding: a systematic review. Obstet Gynecol. 2013;121:632–43

    Article  PubMed Central  PubMed  Google Scholar 

  65. MHH–Medizinische Hochschule Hannover. Morbus Osler (Hereditäre Hämorrhagische Telangiektasie)–erbliche Gefäßfehlbildungen. (https://www.mh-hannover.de/16461.html) (Zugriff 25.10.2014)

  66. Molenaar IQ, Warnaar N, Groen H, Tenvergert EM, Slooff MJ, Porte RJ. Efficacy and safety of antifibrinolytic drugs in liver transplantation: a systematic review and meta-analysis. Am J Transplant. 2007;7:185–94. Review

    Article  CAS  PubMed  Google Scholar 

  67. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study. Arch Surg 2012;147:113–19

    Article  CAS  PubMed  Google Scholar 

  68. Mousa HA1, Blum J, Abou El Senoun G, Shakur H, Alfirevic Z. Treatment for primary postpartum haemorrhage. Cochrane Database Syst Rev. 2014 Feb 13;2:CD003249. doi: 10.1002/14651858.CD003249.pub3

    Google Scholar 

  69. Neilipovitz DT, Murto K, Hall L, Barrowman NJ, Splinter WM. A randomized trial of tranexamic acid to reduce blood transfusion for scoliosis surgery. Anesth Analg. 2001;93:82–7

    Article  CAS  PubMed  Google Scholar 

  70. Novikova N, Hofmeyr GJ. Tranexamic acid for preventing postpartum haemorrhage. Cochrane Database Syst Rev. 2010 Jul 7;(7):CD007872. doi: 10.1002/14651858.CD007872.pub2

    PubMed  Google Scholar 

  71. OT: Online-Tutorial zur Evidence-based Medicine. (http://www.medizinalrat.de/Eb_Medicine/eb_medicine.html) (Zugriff 27.07.2014)

  72. Patel JN, Spanyer JM, Smith LS, Huang J, Yakkanti MR, Malkani AL. Comparison of intravenous versus topical tranexamic acid in total knee arthroplasty: a prospective randomized study. J Arthroplasty. 2014;29:1528–31

    Article  PubMed  Google Scholar 

  73. Panteli M, Papakostidis C, Dahabreh Z, Giannoudis PV. Topical tranexamic acid in total knee replacement: a systematic review and meta-analysis. Knee. 2013;20:300–9

    Article  PubMed  Google Scholar 

  74. Peitsidis P, Kadir RA. Antifibrinolytic therapy with tranexamic acid in pregnancy and postpartum. Expert Opin Pharmacother. 2011;12:503–16

    Article  CAS  PubMed  Google Scholar 

  75. Perel P, Al-Shahi Salman R, Kawahara T, Morris Z, Prieto-Merino D, Roberts I, Sandercock P, Shakur H, Wardlaw J. CRASH-2 (Clinical Randomisation of an Antifibrinolytic in Significant Haemorrhage) intracranial bleeding study: the effect of tranexamic acid in traumatic brain injury–a nested randomised, placebo-controlled trial. Health Technol Assess. 2012;16(13):iii–xii, 1–54. doi: 10.3310/hta16130

    Google Scholar 

  76. Perel P, Ker K, Morales Uribe CH, Roberts I. Tranexamic acid for reducing mortality in emergency and urgent surgery. (Cochrane Database of Systematic Reviews 2013, Issue 1. Art. No.: CD010245. DOI: 10.1002/14651858.CD010245.pub2)

    Google Scholar 

  77. Roberts I, Ker K. Tranexamic acid for postpartum bleeding. Int J Gynaecol Obstet. 2011;115:220–1

    Article  PubMed  Google Scholar 

  78. Roberts I, Shakur H, Ker K, Coats T, on behalf of the CRASH-2 Trial collaborators. Antifibrinolytic drugs for acute traumatic injury. Cochrane Database of Systematic Reviews 2012, Issue 12. Art. No.: CD004896. DOI: 10.1002/14651858.CD004896.pub3

    Google Scholar 

  79. Rö JS, Knutrud O, Stormorken H. J. Antifibrinolytic treatment with tranexamic acid (AMCA) in pediatric urinary tract surgery. Pediatr Surg. 1970;5:315–20

    Article  Google Scholar 

  80. Ross J, Al-Shahi Salman R AS. The frequency of thrombotic events among adults given antifibrinolytic drugs for spontaneous bleeding: systematic review and meta-analysis of observational studies and randomized trials. Curr Drug Saf. 2012;7:44–54

    Article  CAS  PubMed  Google Scholar 

  81. Royal College of Paediatrics and Child Health: Evidence statement. Major trauma and the use of tranexamic acid in children. November 2012 (http://www.rcpch.ac.uk/system/files/protected/page/121112_TXA%20evidence%20statement_final%20v2.pdf.)

  82. Schlembach D, Mörtl MG, Girard T, Arzt W, Beinder E, Brezinka C, Chalubinski K, Fries D, Gogarten W, Hackelöer BJ, Helmer H, Henrich W, Hösli I, Husslein P, Kainer F, Lang U, Pfanner G, Rath W, Schleussner E, Steiner H, Surbek D, Zimmermann R. Management der postpartalen Blutung (PPH)–Algorithmus der Interdisziplinären D-A-CH-Konsensusgruppe PPH. Der Anaesthesist 2014;63:234–242)

    Article  CAS  PubMed  Google Scholar 

  83. Schouten ES, van de Pol AC, Schouten AN, Turner NM, Jansen NJ, Bollen CW. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med. 2009;10:182–90

    Article  PubMed  Google Scholar 

  84. Seo JG, Moon YW, Park SH, Kim SM, Ko KR. The comparative efficacies of intra-articular and IV tranexamic acid for reducing blood loss during total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2013;21:1869–74

    Article  PubMed  Google Scholar 

  85. Sentilhes L, Lasocki S, Ducloy-Bouthors AS, Deruelle P, Dreyfus M, Perrotin F, Goffinet F, Deneux-Tharaux C. Tranexamic acid for the prevention and treatment of postpartum haemorrhage Br. J. Anaesth. first published online January 8, 2015 doi:10.1093/bja/aeu448

    Google Scholar 

  86. Sethna NF, Zurakowski D, Brustowicz RM, Bacsik J, Sullivan LJ, Shapiro F. Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology 2005;102:727–32

    Article  CAS  PubMed  Google Scholar 

  87. Shakur H, Elbourne D, Gülmezoglu M, Alfirevic Z, Ronsmans C, Allen E, Roberts I. WOMAN Trial (World Maternal Antifibrinolytic Trial): tranexamic acid for the treatment of postpartum haemorrhage: an international randomised, double blind placebo controlled trial. Trials 2010, 11:40.) (http://www.trialsjournal.com/content/11/1/40)

  88. Shemshaki H, Nourian SMA, Nourian N, Dehghani M, Mokhtari M, Mazoochian F. One step closer to sparing total blood loss and transfusion rate in total knee arthroplasty: a meta-analysis of different methods of tranexamic acid administration. Arch Orthop Trauma Surg 2015;135:573–88

    Article  PubMed  Google Scholar 

  89. Song G, Yang P, Zhu S, Luo E, Feng G, Hu J, Li J, Li Y. Tranexamic Acid reducing blood transfusion in children undergoing craniosynostosis surgery. J Craniofac Surg. 2013;24:299–303

    Article  PubMed  Google Scholar 

  90. Song G, Yang P, Hu J, Zhu S, Li Y, Wang Q. The effect of tranexamic acid on blood loss in orthognathic surgery: a meta-analysis of randomized controlled trials. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:595–600

    Article  PubMed  Google Scholar 

  91. Soni A, Saini R, Gulati A, Paul R, Bhatty S, Rajoli SR. Comparison between intravenous and intra-articular regimens of tranexamic acid in reducing blood loss during total knee arthroplasty. J Arthroplasty. 2014;29:1525–7

    Article  PubMed  Google Scholar 

  92. Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G. European Stroke Organization Guidelines for the Management of Intracranial Aneurysmsand Subarachnoid Haemorrhage” (Cerebrovasc Dis 2013;35:93–112.)

    Google Scholar 

  93. Strang CM, Hachenberg Th. Anästhesie in der Urologie–Aktuelle Strategien zur Minimierung von Blutverlusten bei radikaler Prostatektomie. Anästhesiol Intensivmed Notfallmed Schmerzther 2013;48:494–501

    Google Scholar 

  94. Sukeik M, Alshryda S, Haddad FS, Mason JM. Systematic review and meta-analysis of the use of tranexamic acid in total hip replacement. J Bone Joint Surg Br. 2011;93:39–46

    Article  CAS  PubMed  Google Scholar 

  95. Tan J, Chen H, Liu Q, Chen C, Huang W. A meta-analysis of the effectiveness and safety of using tranexamic acid in primary unilateral total knee arthroplasty. J Surg Res. 2013;184:880–7

    Article  CAS  PubMed  Google Scholar 

  96. Tzortzopoulou A, Cepeda MS, Schumann R, Carr DB. Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst Rev. 2008 Jul 16;(3):CD006883. doi: 10.1002/14651858.CD006883.pub2

    Google Scholar 

  97. Verma K, Errico T, Diefenbach C, Hoelscher C, Peters A, Dryer J, Huncke T, Boenigk K, Lonner BS. The relative efficacy of antifibrinolytics in adolescent idiopathic scoliosis: a prospective randomized trial. J Bone Joint Surg Am. 2014;96:e80. doi: 10.2106/JBJS.L.00008

    Article  PubMed  Google Scholar 

  98. Vigna-Taglianti F, Basso L, Rolfo P, Brambilla R, Vaccari F, Lanci G, Russo R. Tranexden amic acid for reducing blood transfusions in arthroplasty interventions: a cost-effective practice. Eur J Orthop Surg Traumatol. 2014;24:545–51

    Article  PubMed  Google Scholar 

  99. Wardrop D, Estcourt LJ, Brunskill SJ, Doree C, Trivella M, Stanworth S, Murphy MF. Antifibrinolytics (lysine analogues) for the prevention of bleeding in patients with haematological disorders. Cochrane Database of Systematic Reviews 2013, Issue 7. Art. No.: CD009733. DOI: 10.1002/14651858.CD009733.pub2

    Google Scholar 

  100. White N, Bayliss S, Moore D. Systematic review of interventions for minimizing perioperative blood transfusion for surgery for craniosynostosis. J Craniofac Surg. 2015;26:26–36

    Article  PubMed  Google Scholar 

  101. Whittaker BW, Christiaans SC, Altice JL, Chen MK, Bartolucci AA, Morgan CJ, Kerby JD, Pittet JF: Early coagulopathy is an independent predictor of mortality in children after severe trauma. Shock 2013, 39:421–426

    Article  PubMed Central  PubMed  Google Scholar 

  102. WHO Model List of Essential Medicines. 17th list (April 2011) 10.2 Medicines affecting coagulation. (http://whqlibdoc.who.int/hq/2011/a95053_eng.pdf?ua ? 1)

  103. WHO recommendations for the prevention and treatment of postpartum haemorrhage. WHO Library Cataloguing-in-Publication Data. WHO recommendations for the prevention and treatment of postpartum haemorrhage. 1. Postpartum hemorrhage–prevention and control. 2. Postpartum hemorrhage–therapy. 3. Obstetric labor complications. 4. Guideline. I. World Health Organization. ISBN 978 92 4 154850 2 (NLM classification: WQ 330) (http://apps.who.int/iris/bitstream/10665/75411/1/9789241548502_eng.pdf) (Zugriff am 04.09.2014)

  104. Xu C, Wu A, Yue Y. Which is more effective in adolescent idiopathic scoliosis surgery: batroxobin, tranexamic acid or a combination? Arch Orthop Trauma Surg. 2012;132:25–31

    Article  PubMed  Google Scholar 

  105. Yagi M, Hasegawa J, Nagoshi N, Iizuka S, Kaneko S, Fukuda K, Takemitsu M, Shioda M, Machida M. Does the intraoperative tranexamic acid decrease operative blood loss during posterior spinal fusion for treatment of adolescent idiopathic scoliosis? Spine (Phila Pa 1976). 2012;37:E1336–42

    Google Scholar 

  106. Yang ZG, Chen WP, Wu LD. Effectiveness and safety of tranexamic acid in reducing blood loss in total knee arthroplasty: a meta-analysis. J Bone Joint Surg Am. 2012;94:1153–9

    Article  PubMed  Google Scholar 

  107. Yutthakasemsunt S, Kittiwatanagul W, Piyavechvirat P, Thinkamrop B, Phuenpathom N, Lumbiganon P. Tranexamic acid for patients with traumatic brain injury: a randomized, double-blinded, placebo-controlled trial. BMC Emerg Medicine 2013. doi: 10.1186/1471-227X-13-20. http://www.biomedcentral.com/1471-227X/13/20)

  108. Zhang H, Chen J, Chen F, Que W. The effect of tranexamic acid on blood loss and use of blood products in total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2012;20:1742–52

    Article  PubMed  Google Scholar 

  109. Zhao-Yu C, Yan G, Wei C, Yuejv L, Ying-Ze Z. Reduced blood loss after intra-articular tranexamic acid injection during total knee arthroplasty: a meta-analysis of the literature. Knee Surg Sports Traumatol Arthrosc. 2013 Dec 19. [Epub ahead of print]

    Google Scholar 

  110. Zhou XD, Tao LJ, Li J, Wu LD. Do we really need tranexamic acid in total hip arthroplasty? A meta-analysis of nineteen randomized controlled trials. Arch Orthop Trauma Surg. 2013;133:1017–27

    Article  PubMed  Google Scholar 

  111. Zufferey P, Merquiol F, Laporte S, Decousus H, Mismetti P, Auboyer C, Samama CM, Molliex S. Do antifibrinolytics reduce allogeneic blood transfusion in orthopedic surgery? Anesthesiology 2006;105:1034–46

    Article  PubMed  Google Scholar 

Literatur zu Abschnitt 3.4

  1. Andrew M, Vegh P, Johnston M, Bowker J, Ofosu F, Mitchell L: Maturation of the hemostatic system during childhood. Blood 1992; 80: 1998–2005

    CAS  PubMed  Google Scholar 

  2. Haidl H, Cimenti C, Leschnik B, Zach D, Muntean W: Age-dependency of thrombin generation measured by means of calibrated automated thrombography (CAT). Thromb Haemost 2006; 95: 772–5

    CAS  PubMed  Google Scholar 

  3. Hoylaerts M, Lijnen HR, Collen D: Studies on the mechanism of the antifibrinolytic action of tranexamic acid. Biochim Biophys Acta 1981; 673: 75–85

    Article  CAS  PubMed  Google Scholar 

  4. Longstaff C: Studies on the mechanisms of action of aprotinin and tranexamic acid as plasmin inhibitors and antifibrinolytic agents. Blood Coagul Fibrinolysis 1994; 5: 537–42

    CAS  PubMed  Google Scholar 

  5. Takada A, Makino Y, Takada Y: Effects of tranexamic acid on fibrinolysis, fibrinogenolysis and amidolysis. Thromb Res 1986; 42: 39–47

    Article  CAS  PubMed  Google Scholar 

  6. Lethagen S, Bjorlin G: Effect of tranexamic acid on platelet function in normal volunteers. Eur J Haematol 1991; 47: 77–8

    Article  CAS  PubMed  Google Scholar 

  7. Soslau G, Horrow J, Brodsky I: Effect of tranexamic acid on platelet ADP during extracorporeal circulation. Am J Hematol 1991; 38: 113–9

    Article  CAS  PubMed  Google Scholar 

  8. Mangano DT, Tudor IC, Dietzel C: The risk associated with aprotinin in cardiac surgery. N. Engl.J.Med. 2006; 354: 353–365

    Google Scholar 

  9. Andersson L, Nilsoon IM, Colleen S, Granstrand B, Melander B: Role of urokinase and tissue activator in sustaining bleeding and the management thereof with EACA and AMCA. Ann N Y Acad Sci 1968; 146: 642–58

    Article  CAS  PubMed  Google Scholar 

  10. Andersson L, Eriksson O, Hedlund PO, Kjellman H, Lindqvist B: Special considerations with regard to the dosage of tranexamic acid in patients with chronic renal diseases. Urol Res 1978; 6: 83–8

    CAS  PubMed  Google Scholar 

  11. Dowd NP, Karski JM, Cheng DC, Carroll JA, Lin Y, James RL, Butterworth J: Pharmacokinetics of tranexamic acid during cardiopulmonary bypass. Anesthesiology 2002; 97: 390–9

    Article  CAS  PubMed  Google Scholar 

  12. Henry DA, Carless PA, Moxey AJ, O'Connell D, Stokes BJ, McClelland B, Laupacis A, Fergusson D: Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane.Database.Syst.Rev. 2007: CD001886

    Google Scholar 

  13. Fergusson DA, Hebert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, Teoh K, Duke PC, Arellano R, Blajchman MA, Bussieres JS, Cote D, Karski J, Martineau R, Robblee JA, Rodger M, Wells G, Clinch J, Pretorius R: A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N. Engl.J.Med. 2008; 358: 2319–2331

    Google Scholar 

  14. Fiechtner BK, Nuttall GA, Johnson ME, Dong Y, Sujirattanawimol N, Oliver WC, Jr., Sarpal RS, Oyen LJ, Ereth MH: Plasma tranexamic acid concentrations during cardiopulmonary bypass. Anesth Analg 2001; 92: 1131–6

    Article  CAS  PubMed  Google Scholar 

  15. Ngaage DL, Bland JM: Lessons from aprotinin: is the routine use and inconsistent dosing of tranexamic acid prudent? Meta-analysis of randomised and large matched observational studies. Eur J Cardiothorac Surg 2010; 37: 1375–83

    Article  PubMed  Google Scholar 

  16. Hui AC, Wong TY, Chow KM, Szeto CC: Multifocal myoclonus secondary to tranexamic acid. J Neurol Neurosurg Psychiatry 2003; 74: 547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. de Leede-van der Maarl mg, Hilkens P, Bosch F: The epileptogenic effect of tranexamic acid. J Neurol 1999; 246: 843

    Google Scholar 

  18. Lambert W, Brisebois FJ, Wharton TJ, Carrier RC, Boyle D, Rowe BH: The effectiveness of low dose tranexamic acid in primary cardiac surgery. Can J Anaesth 1998; 45: 571–4

    Article  CAS  PubMed  Google Scholar 

  19. Hutton B, Joseph L, Fergusson D, Mazer CD, Shapiro S, Tinmouth A: Risks of harms using antifibrinolytics in cardiac surgery: systematic review and network meta-analysis of randomised and observational studies. BMJ 2012; 345: e5798

    Article  PubMed Central  PubMed  Google Scholar 

  20. Albisetti M: The fibrinolytic system in children. Semin Thromb Hemost 2003; 29: 339–48

    Article  CAS  PubMed  Google Scholar 

  21. Parmar N, Albisetti M, Berry LR, Chan AK: The fibrinolytic system in newborns and children. Clin Lab 2006; 52: 115–24

    CAS  PubMed  Google Scholar 

  22. Monagle P, Barnes C, Ignjatovic V, Furmedge J, Newall F, Chan A, De Rosa L, Hamilton S, Ragg P, Robinson S, Auldist A, Crock C, Roy N, Rowlands S: Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost 2006; 95: 362–72

    CAS  PubMed  Google Scholar 

  23. Appel IM, Grimminck B, Geerts J, Stigter R, Cnossen MH, Beishuizen A: Age dependency of coagulation parameters during childhood and puberty. J. Thromb. Haemost. 2012

    Google Scholar 

  24. Appel IM, Grimminck B, Geerts J, Stigter R, Cnossen MH, Beishuizen A: Age dependency of coagulation parameters during childhood and puberty. J Thromb Haemost 2012

    Google Scholar 

  25. Monagle P, Massicotte P: Developmental haemostasis: secondary haemostasis. Semin Fetal Neonatal Med 2011; 16: 294–300

    Article  PubMed  Google Scholar 

  26. Monagle P, Newall F, Campbell J: Anticoagulation in neonates and children: Pitfalls and dilemmas. Blood Rev 2010; 24: 151–62

    Article  PubMed  Google Scholar 

  27. Giordano R, Palma G, Poli V, Palumbo S, Russolillo V, Cioffi S, Mucerino M, Mannacio VA, Vosa C: Tranexamic acid therapy in pediatric cardiac surgery: a single-center study. Ann Thorac Surg 2012; 94: 1302–6

    Article  PubMed  Google Scholar 

  28. Grant JA, Howard J, Luntley J, Harder J, Aleissa S, Parsons D: Perioperative blood transfusion requirements in pediatric scoliosis surgery: the efficacy of tranexamic acid. J Pediatr Orthop 2009; 29: 300–4

    Article  PubMed  Google Scholar 

  29. Sethna NF, Zurakowski D, Brustowicz RM, Bacsik J, Sullivan LJ, Shapiro F: Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology 2005; 102: 727–32

    Article  CAS  PubMed  Google Scholar 

  30. Song G, Yang P, Zhu S, Luo E, Feng G, Hu J, Li J, Li Y: Tranexamic Acid reducing blood transfusion in children undergoing craniosynostosis surgery. J Craniofac Surg 2013; 24: 299–303

    Article  PubMed  Google Scholar 

  31. Tzortzopoulou A, Cepeda MS, Schumann R, Carr DB: Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst Rev 2008: CD006883

    Google Scholar 

  32. Chen RH, Frazier OH, Cooley DA: Antifibrinolytic therapy in cardiac surgery. Tex Heart Inst J 1995; 22: 211–5

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Ide M, Bolliger D, Taketomi T, Tanaka KA: Lessons from the aprotinin saga: current perspective on antifibrinolytic therapy in cardiac surgery. J Anesth 2010; 24: 96–106

    Article  PubMed  Google Scholar 

  34. Peters DC, Noble S: Aprotinin: an update of its pharmacology and therapeutic use in open heart surgery and coronary artery bypass surgery. Drugs 1999; 57: 233–60

    Article  CAS  PubMed  Google Scholar 

  35. Robert S, Wagner BK, Boulanger M, Richer M: Aprotinin. Ann Pharmacother 1996; 30: 372–80

    CAS  PubMed  Google Scholar 

  36. Royston D: Aprotinin in patients having coronary artery bypass graft surgery. Curr Opin Cardiol 1995; 10: 591–6

    Article  CAS  PubMed  Google Scholar 

  37. Umscheid CA, Kohl BA, Williams K: Antifibrinolytic use in adult cardiac surgery. Curr Opin Hematol 2007; 14: 455–67

    Article  PubMed  Google Scholar 

  38. Davies MJ, Allen A, Kort H, Weerasena NA, Rocco D, Paul CL, Hunt BJ, Elliott MJ: Prospective, randomized, double-blind study of high-dose aprotinin in pediatric cardiac operations. Ann Thorac Surg 1997; 63: 497–503

    Article  CAS  PubMed  Google Scholar 

  39. Williams GD, Ramamoorthy C, Pentcheva K, Boltz mg, Kamra K, Reddy VM: A randomized, controlled trial of aprotinin in neonates undergoing open-heart surgery. Paediatr Anaesth 2008; 18: 812–9

    Article  PubMed  Google Scholar 

  40. Carrel TP, Schwanda M, Vogt PR, Turina MI: Aprotinin in pediatric cardiac operations: a benefit in complex malformations and with high-dose regimen only. Ann Thorac Surg 1998; 66: 153–8

    Article  CAS  PubMed  Google Scholar 

  41. Murugesan C, Banakal SK, Garg R, Keshavamurthy S, Muralidhar K: The efficacy of aprotinin in arterial switch operations in infants. Anesth Analg 2008; 107: 783–7

    Article  CAS  PubMed  Google Scholar 

  42. Schouten ES, van de Pol AC, Schouten AN, Turner NM, Jansen NJ, Bollen CW: The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med 2009; 10: 182–90

    Article  PubMed  Google Scholar 

  43. Pasquali SK, Li JS, He X, Jacobs ml, O'Brien SM, Hall M, Jaquiss RD, Welke KF, Peterson ED, Shah SS, Jacobs JP: Comparative analysis of antifibrinolytic medications in pediatric heart surgery. J Thorac Cardiovasc Surg 2012; 143: 550–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Faraoni D, Willems A, Melot C, De Hert S, Van der Linden P: Efficacy of tranexamic acid in paediatric cardiac surgery: a systematic review and meta-analysis. Eur J Cardiothorac Surg 2012; 42: 781–6

    Article  PubMed  Google Scholar 

  45. Andersson L, Nilsson IM, Liedberg G, Nilsson L, Rybo G, Eriksson O, Granstrand B, Melander B: Antifibrinolytic drugs. Comparative studies on trans-4-(aminomethyl)-cyclohexane carbonic acid, Aminokapronic acid and p-aminomethylbenzoic acid. Arzneimittelforschung 1971; 21: 424–9

    CAS  PubMed  Google Scholar 

  46. Chauhan S, Das SN, Bisoi A, Kale S, Kiran U: Comparison of epsilon aminocaproic acid and tranexamic acid in pediatric cardiac surgery. J Cardiothorac Vasc Anesth 2004; 18: 141–3

    Article  CAS  PubMed  Google Scholar 

  47. Zonis Z, Seear M, Reichert C, Sett S, Allen C: The effect of preoperative tranexamic acid on blood loss after cardiac operations in children. J Thorac Cardiovasc Surg 1996; 111: 982–7

    Article  CAS  PubMed  Google Scholar 

  48. Levin E, Wu J, Devine DV, Alexander J, Reichart C, Sett S, Seear M: Hemostatic parameters and platelet activation marker expression in cyanotic and acyanotic pediatric patients undergoing cardiac surgery in the presence of tranexamic acid. Thromb Haemost 2000; 83: 54–9

    CAS  PubMed  Google Scholar 

  49. van der Staak FH, de Haan AF, Geven WB, Festen C: Surgical repair of congenital diaphragmatic hernia during extracorporeal membrane oxygenation: hemorrhagic complications and the effect of tranexamic acid. J Pediatr Surg 1997; 32: 594–9

    Article  PubMed  Google Scholar 

  50. Bulutcu FS, Ozbek U, Polat B, Yalcin Y, Karaci AR, Bayindir O: Which may be effective to reduce blood loss after cardiac operations in cyanotic children: tranexamic acid, aprotinin or a combination? Paediatr Anaesth 2005; 15: 41–6

    Article  PubMed  Google Scholar 

  51. Schindler E, Photiadis J, Sinzobahamvya N, Dores A, Asfour B, Hraska V: Tranexamic acid: an alternative to aprotinin as antifibrinolytic therapy in pediatric congenital heart surgery. Eur J Cardiothorac Surg 2011; 39: 495–9

    Article  PubMed  Google Scholar 

  52. Despotis GJ, Avidan MS, Hogue CW, Jr.: Mechanisms and attenuation of hemostatic activation during extracorporeal circulation. Ann Thorac Surg 2001; 72: S1821–31

    Article  CAS  PubMed  Google Scholar 

  53. Edmunds LH, Jr.: Blood-surface interactions during cardiopulmonary bypass. J Card Surg 1993; 8: 404–10

    Article  PubMed  Google Scholar 

  54. Mangano DT, Tudor IC, Dietzel C: The risk associated with aprotinin in cardiac surgery. N Engl J Med 2006; 354: 353–65

    Article  CAS  PubMed  Google Scholar 

  55. Mangano DT, Miao Y, Vuylsteke A, Tudor IC, Juneja R, Filipescu D, Hoeft A, Fontes ml, Hillel Z, Ott E, Titov T, Dietzel C, Levin J: Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA 2007; 297: 471–9

    Article  CAS  PubMed  Google Scholar 

  56. Fergusson DA, Hebert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, Teoh K, Duke PC, Arellano R, Blajchman MA, Bussieres JS, Cote D, Karski J, Martineau R, Robblee JA, Rodger M, Wells G, Clinch J, Pretorius R: A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 2008; 358: 2319–31

    Article  CAS  PubMed  Google Scholar 

  57. Szekely A, Sapi E, Breuer T, Kertai MD, Bodor G, Vargha P, Szatmari A: Aprotinin and renal dysfunction after pediatric cardiac surgery. Paediatr Anaesth 2008; 18: 151–9

    Article  PubMed  Google Scholar 

  58. Backer CL, Kelle AM, Stewart RD, Suresh SC, Ali FN, Cohn RA, Seshadri R, Mavroudis C: Aprotinin is safe in pediatric patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 2007; 134: 1421–6; discussion 1426–8

    Article  CAS  PubMed  Google Scholar 

  59. Brown JR: Mortality manifesto: a meta-analysis of aprotinin and tranexamic acid mortality. Eur J Cardiothorac Surg 2009; 36: 781–2

    Article  PubMed  Google Scholar 

  60. Brown JR, Birkmeyer NJ, O'Connor GT: Meta-analysis comparing the effectiveness and adverse outcomes of antifibrinolytic agents in cardiac surgery. Circulation 2007; 115: 2801–13

    Article  CAS  PubMed  Google Scholar 

  61. Breuer T, Martin K, Wilhelm M, Wiesner G, Schreiber C, Hess J, Lange R, Tassani P: The blood sparing effect and the safety of aprotinin compared to tranexamic acid in paediatric cardiac surgery. Eur J Cardiothorac Surg 2009; 35: 167–71; author reply 171

    Article  PubMed  Google Scholar 

  62. Furtmuller R, Schlag mg, Berger M, Hopf R, Huck S, Sieghart W, Redl H: Tranexamic acid, a widely used antifibrinolytic agent, causes convulsions by a gamma-aminobutyric acid(A) receptor antagonistic effect. J Pharmacol Exp Ther 2002; 301: 168–73

    Article  CAS  PubMed  Google Scholar 

  63. Schlag MG, Hopf R, Redl H: Convulsive seizures following subdural application of fibrin sealant containing tranexamic acid in a rat model. Neurosurgery 2000; 47: 1463–7

    Article  CAS  PubMed  Google Scholar 

  64. Schlag MG, Hopf R, Zifko U, Redl H: Epileptic seizures following cortical application of fibrin sealants containing tranexamic acid in rats. Acta Neurochir (Wien) 2002; 144: 63–9

    Article  CAS  Google Scholar 

  65. Jaquiss RD, Ghanayem NS, Zacharisen MC, Mussatto KA, Tweddell JS, Litwin SB: Safety of aprotinin use and re-use in pediatric cardiothoracic surgery. Circulation 2002; 106: I90–4

    PubMed  Google Scholar 

Literatur zu Abschnitt 3.5

  1. Ferraris VA, Brown JR, Despotis GJ, Hammon JW, Reece TB, Saha SP, Song HK, Clough ER, Shore-Lesserson LJ, Goodnough LT, Mazer CD, Shander A, Stafford-Smith M, Waters J, Baker RA, Dickinson TA, FitzGerald DJ, Likosky DS, Shann KG. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg 2011; 91: 944–82

    Article  PubMed  Google Scholar 

  2. Robich MP, Koch CG, Johnston DR, Schiltz N, Chandran Pillai A, Hussain ST, Soltesz EG. Trends in blood utilization in United States cardiac surgical patients. Transfusion 2014; [Epub ahead of print]

    Google Scholar 

  3. Mehta RH, Sheng S, O'Brien SM, Grover FL, Gammie JS, Ferguson TB, Peterson ED. Reoperation for bleeding in patients undergoing coronary artery bypass surgery: incidence, risk factors, time trends, and outcomes. Circulation Cardiovascular quality and outcomes 2009; 2: 583–90

    Google Scholar 

  4. Horvath KA, Acker MA, Chang H, Bagiella E, Smith PK, Iribarne A, Kron IL, Lackner P, Argenziano M, Ascheim DD, Gelijns AC, Michler RE, Van Patten D, Puskas JD, O'Sullivan K, Kliniewski D, Jeffries NO, O'Gara PT, Moskowitz AJ, Blackstone EH. Blood transfusion and infection after cardiac surgery. Ann Thorac Surg 2013; 95: 2194–201

    Article  PubMed Central  PubMed  Google Scholar 

  5. Koch CG, Li L, Duncan AI, Mihaljevic T, Cosgrove DM, Loop FD, Starr NJ, Blackstone EH. Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting. Crit Care Med 2006; 34: 1608–16

    Article  PubMed  Google Scholar 

  6. Koch CG, Li L, Duncan AI, Mihaljevic T, Loop FD, Starr NJ, Blackstone EH. Transfusion in coronary artery bypass grafting is associated with reduced long-term survival. Ann Thorac Surg 2006; 81: 1650–7

    Article  PubMed  Google Scholar 

  7. Dyke C, Aronson S, Dietrich W, Hofmann A, Karkouti K, Levi M, Murphy GJ, Sellke FW, Shore-Lesserson L, von Heymann C, Ranucci M. Universal definition of perioperative bleeding in adult cardiac surgery. J Thorac Cardiovasc Surg 2014; 147: 1458–1463.e1

    PubMed  Google Scholar 

  8. Henry DA, Carless PA, Moxey AJ, O'Connell D, Stokes BJ, Fergusson DA, Ker K. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. The Cochrane database of systematic reviews 2011: Cd001886

    Google Scholar 

  9. Levi M, Cromheecke ME, de Jonge E, Prins MH, de Mol BJ, Briet E, Buller HR. Pharmacological strategies to decrease excessive blood loss in cardiac surgery: a meta-analysis of clinically relevant endpoints. Lancet 1999; 354: 1940–7

    Article  CAS  PubMed  Google Scholar 

  10. Ngaage DL, Bland JM. Lessons from aprotinin: is the routine use and inconsistent dosing of tranexamic acid prudent? Meta-analysis of randomised and large matched observational studies. Eur J Cardiothorac Surg 2010; 37: 1375–83

    Article  PubMed  Google Scholar 

  11. Ker K, Edwards P, Perel P, Shakur H, Roberts I. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. BMJ (Clinical research ed) 2012; 344: e3054

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Fergusson DA, Hebert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, Teoh K, Duke PC, Arellano R, Blajchman MA, Bussieres JS, Cote D, Karski J, Martineau R, Robblee JA, Rodger M, Wells G, Clinch J, Pretorius R. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 2008; 358: 2319–31

    Article  CAS  PubMed  Google Scholar 

  13. Royston D, Bidstrup BP, Taylor KM, Sapsford RN. Effect of aprotinin on need for blood transfusion after repeat open-heart surgery. Lancet 1987; 2: 1289–91

    Article  CAS  PubMed  Google Scholar 

  14. Brown JR, Birkmeyer NJ, O'Connor GT. Meta-analysis comparing the effectiveness and adverse outcomes of antifibrinolytic agents in cardiac surgery. Circulation 2007; 115: 2801–13

    Article  CAS  PubMed  Google Scholar 

  15. Henry D, Carless P, Fergusson D, Laupacis A. The safety of aprotinin and lysine-derived antifibrinolytic drugs in cardiac surgery: a meta-analysis. Cmaj 2009; 180: 183–93

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hutton B, Joseph L, Fergusson D, Mazer CD, Shapiro S, Tinmouth A. Risks of harms using antifibrinolytics in cardiac surgery: systematic review and network meta-analysis of randomised and observational studies. BMJ (Clinical research ed) 2012; 345: e5798

    Article  PubMed Central  PubMed  Google Scholar 

  17. Carless PA, Moxey AJ, Stokes BJ, Henry DA. Are antifibrinolytic drugs equivalent in reducing blood loss and transfusion in cardiac surgery? A meta-analysis of randomized head-to-head trials. BMC cardiovascular disorders 2005; 5: 19

    Article  PubMed Central  PubMed  Google Scholar 

  18. Bernet F, Carrel T, Marbet G, Skarvan K, Stulz P. Reduction of blood loss and transfusion requirements after coronary artery bypass grafting: similar efficacy of tranexamic acid and aprotinin in aspirin-treated patients. J Card Surg 1999; 14: 92–7

    Article  CAS  PubMed  Google Scholar 

  19. Blauhut B, Harringer W, Bettelheim P, Doran JE, Spath P, Lundsgaard-Hansen P. Comparison of the effects of aprotinin and tranexamic acid on blood loss and related variables after cardiopulmonary bypass. J Thorac Cardiovasc Surg 1994; 108: 1083–91

    CAS  PubMed  Google Scholar 

  20. Casati V, Guzzon D, Oppizzi M, Bellotti F, Franco A, Gerli C, Cossolini M, Torri G, Calori G, Benussi S, Alfieri O. Tranexamic acid compared with high-dose aprotinin in primary elective heart operations: effects on perioperative bleeding and allogeneic transfusions. J Thorac Cardiovasc Surg 2000; 120: 520–7

    Article  CAS  PubMed  Google Scholar 

  21. Casati V, Guzzon D, Oppizzi M, Cossolini M, Torri G, Calori G, Alfieri O. Hemostatic effects of aprotinin, tranexamic acid and epsilon-aminocaproic acid in primary cardiac surgery. Ann Thorac Surg 1999; 68: 2252–6; discussion 2256-7

    Article  CAS  PubMed  Google Scholar 

  22. Dietrich W, Spannagl M, Boehm J, Hauner K, Braun S, Schuster T, Busley R. Tranexamic acid and aprotinin in primary cardiac operations: an analysis of 220 cardiac surgical patients treated with tranexamic acid or aprotinin. Anesth Analg 2008; 107: 1469–78

    Article  PubMed  Google Scholar 

  23. Diprose P, Herbertson MJ, O'Shaughnessy D, Deakin CD, Gill RS. Reducing allogeneic transfusion in cardiac surgery: a randomized double-blind placebo-controlled trial of antifibrinolytic therapies used in addition to intra-operative cell salvage. Br J Anaesth 2005; 94: 271–8

    Article  CAS  PubMed  Google Scholar 

  24. Kuitunen A, Hiippala S, Vahtera E, Rasi V, Salmenpera M. The effects of aprotinin and tranexamic acid on thrombin generation and fibrinolytic response after cardiac surgery. Acta anaesthesiologica Scandinavica 2005; 49: 1272–9

    Article  CAS  PubMed  Google Scholar 

  25. Penta de Peppo A, Pierri MD, Scafuri A, De Paulis R, Colantuono G, Caprara E, Tomai F, Chiariello L. Intraoperative antifibrinolysis and blood-saving techniques in cardiac surgery. Prospective trial of 3 antifibrinolytic drugs. Tex Heart Inst J 1995; 22: 231–6

    PubMed  Google Scholar 

  26. Pugh SC, Wielogorski AK. A comparison of the effects of tranexamic acid and low-dose aprotinin on blood loss and homologous blood usage in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 1995; 9: 240–4

    Article  CAS  PubMed  Google Scholar 

  27. Later AF, Maas JJ, Engbers FH, Versteegh MI, Bruggemans EF, Dion RA, Klautz RJ. Tranexamic acid and aprotinin in low- and intermediate-risk cardiac surgery: a non-sponsored, double-blind, randomised, placebo-controlled trial. Eur J Cardiothorac Surg 2009; 36: 322–9

    Article  PubMed  Google Scholar 

  28. Mansour EE MB. Aprotinin versus tranexamic acid in patients receiving aspirin and undergoing off-pump coronary artery bypass. Egypt J Anaesth 2004; 20: 229–36

    CAS  Google Scholar 

  29. Vanek T, Jares M, Fajt R, Straka Z, Jirasek K, Kolesar M, Brucek P, Maly M. Fibrinolytic inhibitors in off-pump coronary surgery: a prospective, randomized, double-blind TAP study (tranexamic acid, aprotinin, placebo). Eur J Cardiothorac Surg 2005; 28: 563–8

    Article  PubMed  Google Scholar 

  30. Mengistu AM, Rohm KD, Boldt J, Mayer J, Suttner SW, Piper SN. The influence of aprotinin and tranexamic acid on platelet function and postoperative blood loss in cardiac surgery. Anesth Analg 2008; 107: 391-7. Retraction in: Anesth Analg. 2011 May;112(5):1047

    Google Scholar 

  31. Isetta C GT, Samat C, Paolini G, Lugrin D, Sanchez B, Jourdan J. Antifibrinolytic Treatment and Homologeous Transfusion in Cardiac Surgery. European heart journal 1993; 15: 424

    Google Scholar 

  32. Corbeau JJ, Monrigal JP, Jacob JP, Cottineau C, Moreau X, Bukowski JG, Subayi JB, Delhumeau A. [Comparison of effects of aprotinin and tranexamic acid on blood loss in heart surgery]. Annales francaises d'anesthesie et de reanimation 1995; 14: 154–61

    Google Scholar 

  33. Speekenbrink RG, Vonk AB, Wildevuur CR, Eijsman L. Hemostatic efficacy of dipyridamole, tranexamic acid, and aprotinin in coronary bypass grafting. Ann Thorac Surg 1995; 59: 438–42

    Article  CAS  PubMed  Google Scholar 

  34. Wong BI, McLean RF, Fremes SE, Deemar KA, Harrington EM, Christakis GT, Goldman BS. Aprotinin and tranexamic acid for high transfusion risk cardiac surgery. Ann Thorac Surg 2000; 69: 808–16

    Article  CAS  PubMed  Google Scholar 

  35. Hekmat K, Zimmermann T, Kampe S, Kasper SM, Weber HJ, Geissler HJ, Mehlhorn U. Impact of tranexamic acid vs. aprotinin on blood loss and transfusion requirements after cardiopulmonary bypass: a prospective, randomised, double-blind trial. Current medical research and opinion 2004; 20: 121–6

    Google Scholar 

  36. Ngaage DL, Griffin S, Guvendik L, Cowen ME, Cale AR. Changing operative characteristics of patients undergoing operations for coronary artery disease: impact on early outcomes. Ann Thorac Surg 2008; 86: 1424–30

    Article  PubMed  Google Scholar 

  37. Bennett-Guerrero E, Zhao Y, O'Brien SM, Ferguson TB, Jr., Peterson ED, Gammie JS, Song HK. Variation in use of blood transfusion in coronary artery bypass graft surgery. Jama 2010; 304: 1568–75

    Article  CAS  PubMed  Google Scholar 

  38. Menichetti A, Tritapepe L, Ruvolo G, Speziale G, Cogliati A, Di Giovanni C, Pacilli M, Criniti A. Changes in coagulation patterns, blood loss and blood use after cardiopulmonary bypass: aprotinin vs tranexamic acid vs epsilon aminocaproic acid. The Journal of cardiovascular surgery 1996; 37: 401–7

    CAS  PubMed  Google Scholar 

  39. Misfeld M, Dubbert S, Eleftheriadis S, Siemens HJ, Wagner T, Sievers HH. Fibrinolysis-adjusted perioperative low-dose aprotinin reduces blood loss in bypass operations. Ann Thorac Surg 1998; 66: 792–9

    Article  CAS  PubMed  Google Scholar 

  40. Martin K, Wiesner G, Breuer T, Lange R, Tassani P. The risks of aprotinin and tranexamic acid in cardiac surgery: a one-year follow-up of 1188 consecutive patients. Anesth Analg 2008; 107: 1783–90

    Article  CAS  PubMed  Google Scholar 

  41. ElBardissi AW, Aranki SF, Sheng S, O'Brien SM, Greenberg CC, Gammie JS. Trends in isolated coronary artery bypass grafting: an analysis of the Society of Thoracic Surgeons adult cardiac surgery database. J Thorac Cardiovasc Surg 2012; 143: 273–81

    Article  PubMed  Google Scholar 

  42. Cheng DC, Bainbridge D, Martin JE, Novick RJ. Does off-pump coronary artery bypass reduce mortality, morbidity, and resource utilization when compared with conventional coronary artery bypass? A meta-analysis of randomized trials. Anesthesiology 2005; 102: 188–203

    Article  PubMed  Google Scholar 

  43. Adler Ma SC, Brindle W, Burton G, Gallacher S, Hong FC, Manelius I, Smith A, Ho W, Alston RP, Bhattacharya K. Tranexamic acid is associated with less blood transfusion in off-pump coronary artery bypass graft surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth 2011; 25: 26–35

    Article  CAS  Google Scholar 

  44. Wei M, Jian K, Guo Z, Li P, Han J, Cai Z, Tarkka M. Effects of half-dose aprotinin in off-pump coronary artery bypass grafting. World J Surg 2006; 30: 1108–14

    Article  PubMed  Google Scholar 

  45. Menkis AH, Martin J, Cheng DC, Fitzgerald DC, Freedman JJ, Gao C, Koster A, Mackenzie GS, Murphy GJ, Spiess B, Ad N. Drug, devices, technologies, and techniques for blood management in minimally invasive and conventional cardiothoracic surgery: a consensus statement from the International Society for Minimally Invasive Cardiothoracic Surgery (ISMICS) 2011. Innovations (Philadelphia, Pa) 2012; 7: 229–41

    PubMed  Google Scholar 

  46. Kon ZN, Brown EN, Grant MC, Ozeki T, Burris NS, Collins MJ, Kwon MH, Poston RS. Warm ischemia provokes inflammation and regional hypercoagulability within the heart during off-pump coronary artery bypass: a possible target for serine protease inhibition. Eur J Cardiothorac Surg 2008; 33: 215–21

    Article  PubMed Central  PubMed  Google Scholar 

  47. Desai PH, Kurian D, Thirumavalavan N, Desai SP, Ziu P, Grant M, White C, Landis RC, Poston RS. A randomized clinical trial investigating the relationship between aprotinin and hypercoagulability in off-pump coronary surgery. Anesth Analg 2009; 109: 1387–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Martin J, Cheng D. Tranexamic acid for routine use in off-pump coronary artery bypass surgery: evidence base "fait accompli" or more research needed? Anesth Analg 2012; 115: 227–30

    Article  CAS  PubMed  Google Scholar 

  49. Eaton MP. Antifibrinolytic therapy in surgery for congenital heart disease. Anesth Analg 2008; 106: 1087–100

    Article  CAS  PubMed  Google Scholar 

  50. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Controlled clinical trials 1996; 17: 1–12

    Google Scholar 

  51. Levin E, Wu J, Devine DV, Alexander J, Reichart C, Sett S, Seear M. Hemostatic parameters and platelet activation marker expression in cyanotic and acyanotic pediatric patients undergoing cardiac surgery in the presence of tranexamic acid. Thromb Haemost 2000; 83: 54–9

    CAS  PubMed  Google Scholar 

  52. Zonis Z, Seear M, Reichert C, Sett S, Allen C. The effect of preoperative tranexamic acid on blood loss after cardiac operations in children. J Thorac Cardiovasc Surg 1996; 111: 982–7

    Article  CAS  PubMed  Google Scholar 

  53. Chauhan S, Bisoi A, Kumar N, Mittal D, Kale S, Kiran U, Venugopal P. Dose comparison of tranexamic acid in pediatric cardiac surgery. Asian Cardiovasc Thorac Ann 2004; 12: 121–4

    Article  PubMed  Google Scholar 

  54. Chauhan S, Bisoi A, Modi R, Gharde P, Rajesh MR. Tranexamic acid in paediatric cardiac surgery. The Indian journal of medical research 2003; 118: 86–9

    CAS  PubMed  Google Scholar 

  55. Chauhan S, Das SN, Bisoi A, Kale S, Kiran U. Comparison of epsilon aminocaproic acid and tranexamic acid in pediatric cardiac surgery. J Cardiothorac Vasc Anesth 2004; 18: 141–3

    Article  CAS  PubMed  Google Scholar 

  56. Chauhan S, Kumar BA, Rao BH, Rao MS, Dubey B, Saxena N, Venugopal P. Efficacy of aprotinin, epsilon aminocaproic acid, or combination in cyanotic heart disease. Ann Thorac Surg 2000; 70: 1308–12

    Article  CAS  PubMed  Google Scholar 

  57. Bulutcu FS, Ozbek U, Polat B, Yalcin Y, Karaci AR, Bayindir O. Which may be effective to reduce blood loss after cardiac operations in cyanotic children: tranexamic acid, aprotinin or a combination? Paediatr Anaesth 2005; 15: 41–6

    Article  PubMed  Google Scholar 

  58. Schouten ES, van de Pol AC, Schouten AN, Turner NM, Jansen NJ, Bollen CW. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med 2009; 10: 182–90

    Article  PubMed  Google Scholar 

  59. Pasquali SK, Li JS, He X, Jacobs ml, O'Brien SM, Hall M, Jaquiss RD, Welke KF, Peterson ED, Shah SS, Jacobs JP. Comparative analysis of antifibrinolytic medications in pediatric heart surgery. J Thorac Cardiovasc Surg 2012; 143: 550–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Breuer T, Martin K, Wilhelm M, Wiesner G, Schreiber C, Hess J, Lange R, Tassani P. The blood sparing effect and the safety of aprotinin compared to tranexamic acid in paediatric cardiac surgery. Eur J Cardiothorac Surg 2009; 35: 167–71; author reply 171

    Article  PubMed  Google Scholar 

  61. Schindler E, Photiadis J, Sinzobahamvya N, Dores A, Asfour B, Hraska V. Tranexamic acid: an alternative to aprotinin as antifibrinolytic therapy in pediatric congenital heart surgery. Eur J Cardiothorac Surg 2011; 39: 495–9

    Article  PubMed  Google Scholar 

  62. Soslau G, Horrow J, Brodsky I. Effect of tranexamic acid on platelet ADP during extracorporeal circulation. Am J Hematol 1991; 38: 113–9

    Article  CAS  PubMed  Google Scholar 

  63. Dowd NP, Karski JM, Cheng DC, Carroll JA, Lin Y, James RL, Butterworth J. Pharmacokinetics of tranexamic acid during cardiopulmonary bypass. Anesthesiology 2002; 97: 390–9

    Article  CAS  PubMed  Google Scholar 

  64. Fiechtner BK, Nuttall GA, Johnson ME, Dong Y, Sujirattanawimol N, Oliver WC, Jr., Sarpal RS, Oyen LJ, Ereth MH. Plasma tranexamic acid concentrations during cardiopulmonary bypass. Anesth Analg 2001; 92: 1131–6

    Article  CAS  PubMed  Google Scholar 

  65. Andersson L, Nilsoon IM, Colleen S, Granstrand B, Melander B. Role of urokinase and tissue activator in sustaining bleeding and the management thereof with EACA and AMCA. Annals of the New York Academy of Sciences 1968; 146: 642–58

    Article  CAS  PubMed  Google Scholar 

  66. Yee BE, Wissler RN, Zanghi CN, Feng C, Eaton MP. The effective concentration of tranexamic acid for inhibition of fibrinolysis in neonatal plasma in vitro. Anesth Analg 2013; 117: 767–72

    Article  PubMed  Google Scholar 

  67. Grassin-Delyle S, Couturier R, Abe E, Alvarez JC, Devillier P, Urien S. A practical tranexamic acid dosing scheme based on population pharmacokinetics in children undergoing cardiac surgery. Anesthesiology 2013; 118: 853–62

    Article  CAS  PubMed  Google Scholar 

  68. Grassin-Delyle S, Tremey B, Abe E, Fischler M, Alvarez JC, Devillier P, Urien S. Population pharmacokinetics of tranexamic acid in adults undergoing cardiac surgery with cardiopulmonary bypass. Br J Anaesth 2013; 111: 916–24

    Article  CAS  PubMed  Google Scholar 

  69. Wesley MC, Pereira LM, Scharp LA, Emani SM, McGowan FX, Jr., DiNardo JA. Pharmacokinetics of Tranexamic Acid in Neonates, Infants, and Children Undergoing Cardiac Surgery with Cardiopulmonary Bypass. Anesthesiology 2015; Jan 12. [Epub ahead of print]

    Google Scholar 

  70. Mangano DT, Miao Y, Vuylsteke A, Tudor IC, Juneja R, Filipescu D, Hoeft A, Fontes ml, Hillel Z, Ott E, Titov T, Dietzel C, Levin J. Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. Jama 2007; 297: 471–9

    Article  CAS  PubMed  Google Scholar 

  71. Mangano DT, Tudor IC, Dietzel C, Multicenter Study of Perioperative Ischemia Research G, Ischemia R, Education F. The risk associated with aprotinin in cardiac surgery. N Engl J Med 2006; 354: 353–65

    Article  CAS  PubMed  Google Scholar 

  72. Karkouti K, Beattie WS, Dattilo KM, McCluskey SA, Ghannam M, Hamdy A, Wijeysundera DN, Fedorko L, Yau TM. A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery. Transfusion 2006; 46: 327–38

    Article  CAS  PubMed  Google Scholar 

  73. Schneeweiss S, Seeger JD, Landon J, Walker AM. Aprotinin during coronary-artery bypass grafting and risk of death. N Engl J Med 2008; 358: 771–83

    Article  CAS  PubMed  Google Scholar 

  74. McMullan V, Alston RP. III. Aprotinin and cardiac surgery: a sorry tale of evidence misused. Br J Anaesth 2013; 110: 675–8

    Article  CAS  PubMed  Google Scholar 

  75. O'Connor CJ, Brown DV, Avramov M, Barnes S, O'Connor HN, Tuman KJ. The impact of renal dysfunction on aprotinin pharmacokinetics during cardiopulmonary bypass. Anesth Analg 1999; 89: 1101–7

    Article  PubMed  Google Scholar 

  76. Oliver WC, Jr., Fass DN, Nuttall GA, Dearani JA, Schrader LM, Schroeder DR, Ereth MH, Puga FJ. Variability of plasma aprotinin concentrations in pediatric patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 2004; 127: 1670–7

    Article  CAS  PubMed  Google Scholar 

  77. Mossinger H, Dietrich W, Braun SL, Jochum M, Meisner H, Richter JA. High-dose aprotinin reduces activation of hemostasis, allogeneic blood requirement, and duration of postoperative ventilation in pediatric cardiac surgery. Ann Thorac Surg 2003; 75: 430–7

    Article  PubMed  Google Scholar 

Literatur zu Abschnitt 3.3

  1. Ahlberg A, Eriksson O, Kjellman H. Diffusion of tranexamic acid to the joint. Acta Orthop Scand. 1976;47:486–8

    Article  CAS  PubMed  Google Scholar 

  2. Alshryda S, Sarda P, Sukeik M, Nargol A, Blenkinsopp J, Mason JM. Tranexamic acid in total knee replacement: a systematic review and meta-analysis. J Bone Joint Surg Br. 2011;93:1577–85

    Article  CAS  PubMed  Google Scholar 

  3. Alshryda S, Mason J, Vaghela M, Sarda P, Nargol A, Maheswaran S, Tulloch C, Anand S, Logishetty R, Stothart B, NMC(ENB), NCFE, Hungin APS. Topical (Intra-Articular) Tranexamic Acid Reduces Blood Loss and Transfusion Rates Following Total Knee Replacement. A Randomized Controlled Trial (TRANX-K). J Bone Joint Surg Am. 2013;95:1961–8

    Article  PubMed  Google Scholar 

  4. Alshryda S, Mason S, Sarda P, Nargol A, Nick Cooke N, Ahmad H, Tang S, Logishetty R, Vaghela M, McPartlin L, Hungin APS. Topical (Intra-Articular) Tranexamic Acid Reduces Blood Loss and Transfusion Rates Following Total Hip Replacement..A Randomized Controlled Trial (TRANX-H). J Bone Joint Surg Am. 2013;95:1969–74

    Article  PubMed  Google Scholar 

  5. Alshryda S, Mason JM, Sarda P, Lou T, Stanley M, Wu J, Unsworth A. The effect of tranexamic acid on artificial joint materials: a biomechanical study (the bioTRANX study). J Orthop Traumatol. 2014 Aug 5. [Epub ahead of print] PMID: 25091616

    Google Scholar 

  6. Alshryda S, Sukeik M, Sarda P, Blenkinsopp J, Haddad FS, Mason JM. A systematic review and meta-analysis of the topical administration of tranexamic acid in total hip and knee replacement. Bone Joint J. 2014;96-B:1005–15

    Article  CAS  PubMed  Google Scholar 

  7. AWMF Leitlinien der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG) Interdisziplinäre Expertengruppe „Diagnostik und Therapie peripartaler Blutungen“ (Erstellungsdatum 06/2008)

    Google Scholar 

  8. AWMF (http://www.awmf.org/fileadmin/user_upload/Leitlinien/041_D_Interdisziplinaere_V_fuer_Schmerztherapie/041-004g_S3_Fibromyalgiesyndrom_2012-04.pdf) (Zugriff 24.07.2014)

  9. Baharoglu MI, Germans MR, Rinkel GJ, Algra A, Vermeulen M, van Gijn J, Roos YB. Antifibrinolytic therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2013 Aug 30;8:CD001245

    PubMed  Google Scholar 

  10. Beno S, Ackery AD, Callum J, Rizoli S. Tranexamic acid in pediatric trauma: why not? Critical Care 2014;18:313. 10.1186/cc13965 (http://ccforum.com/content/18/4/313.)

    Google Scholar 

  11. http://www.bfarm.de/SiteGlobals/Forms/Suche/Servicefunktionsuche_Formular.html;jsessionid ? 3996FF9E7EA35EAF6A02F20E7C424D49.1_cid350?nn ? 4691330&resourceId ? 3496612&input_?5760296&pageLocale?de & templateQueryString?aprotinin (Zugriff am 17.01.2015)

  12. http://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RV_STP/stp-aprotinin-neu.html (Zugriff am 17.01.2015)

  13. http://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RV_STP/stp-tranexams%C3%A4ure-neu.html (Zugriff am 17.01.2015)

  14. BfArm (http://www.bfarm.de/DE/Arzneimittel/zul/kam/pdWS/empfehlungen/docs/tranexamsaeure.html) (Zugriff am 18.08.2014)

  15. BfArm (http://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Pharmakovigilanz/Risikoinformationen/RisikoBewVerf/tranexamsaeure_bescheid_20121218.pdf?__blob?publicationFile & v ? 1) (Zugriff am 18.08.2014)

  16. BfArm (http://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Pharmakovigilanz/Risikoinformationen/RisikoBewVerf/aprotinin_bescheid_20131111.pdf?__blob?publicationFile&v ? 3).)

  17. BfArm (http://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Pharmakovigilanz/Risikoinformationen/RisikoBewVerf/tranexamsaeure_ke_annex.pdf?__blob?publicationFile&v ? 1) (Zugriff 28.06.2014)

  18. Bidolegui F, Arce G, Lugones A, Pereira S, Vindver G. Tranexamic Acid Reduces Blood Loss and Transfusion in Patients Undergoing Total Knee Arthroplasty without Tourniquet: A Prospective Randomized Controlled Trial. Open Orthop J. 2014 Jul 11;8:250–4. doi: 10.2174/1874325001408010250. eCollection 2014

    Article  PubMed Central  PubMed  Google Scholar 

  19. Breau RH, Kokolo MB, Punjani N, Cagiannos I, Beck A, Niznick N, Buenaventura C, Cowan J, Knoll G, Momoli F, Morash C, Ruzicka M, Schachkina S, Tinmouth A, Xie HY, Fergusson DA. The effects of lysine analogs during pelvic surgery: a systematic review and meta-analysis. Transfus Med Rev. 2014;28:145–55

    Article  PubMed  Google Scholar 

  20. CD: Cochrane Glossar: (http://www.cohrane.de/de/cochrane-glossar) (Zugriff 27.07.2014)

  21. CL: EbM-Tutorial der Cochrane Library (http://www.medizinalrat.de/Eb_Medicine/EbM_-_Theorie_und_Handwerkszeu/ebm_-_theorie_und_handwerkszeu6.html) Zugriff 13.09.2014)

  22. Craik JD, Ei Shafie SA, Kidd AG, Twyman RS. Can local administration of tranexamic acid during total knee arthroplasty reduce blood loss and transfusion requirements in the absence of surgical drains? Eur J Orthop Surg Traumatol. 2014;24:379–84

    Article  PubMed  Google Scholar 

  23. CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376: 23–32. Published Online June 15, 2010 DOI:10.1016/S0140-6736(10)60835-5)

    Google Scholar 

  24. CRASH-2 collaborators. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. (www.thelancet.com Published Online March 24, 2011. DOI:10.1016/S0140-6736(11)60278-X))

  25. CRD: Centre for Review and Dissemination

    Google Scholar 

  26. (http://www.crd.york.ac.uk/CRDWeb/ResultsPage.asp?Active_Results_Tab?0&DatabaseID?0&PageNumber?1&RecordsPerPage?20&SearchSessionID?1603074&LineID?1509022&SearchFor?%28tranexamic+acid%29+IN+DARE%2C+NHSEED%2C+HTA+&SearchXML?%26amp%3Blt%3Badvanced%26amp%3Bgt%3B%26amp%3Blt%3Bsearchfor+field%3D%26amp%3Bgt%3B%28tranexamic+acid%29+IN+DARE%2C+NHSEED%2C+HTA+%26amp%3Blt%3B%2Fsearchfor%26amp%3Bgt%3B%26amp%3Blt%3B%2Fadvanced%26amp%3Bgt%3B&UserID?0&ShowPreviews?0&ShowPubmed?0&SearchSortField?0&SearchSortDirection?1&ShowSelected?0)

  27. Crescenti A, Borghi G, Bignami E, Bertarelli G, Landoni G, Casiraghi GM, Alberto Briganti A, Montorsi F, Rigatti P, Zangrillo A. Intraoperative use of tranexamic acid to reduce transfusion rate in patients undergoing radical retropubic prostatectomy: double blind, randomised, placebo controlled trial. BMJ 2011;343:d5701 doi: 10.1136/bmj.d5701

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Curry N, Hopewell S, Doree C, Hyde C, Brohi K, Stanworth S. The acute management of trauma hemorrhage: a systematic review of randomized controlled trials. Critical Care 2011;15:R92

    Article  PubMed Central  PubMed  Google Scholar 

  29. Dadure C, Sauter M, Bringuier S, Bigorre M, Raux O, Rochette A, Canaud N, Capdevila X. Intraoperative tranexamic acid reduces blood transfusion in children undergoing craniosynostosis surgery: a randomized double-blind study. Anesthesiology. 2011;114:856–61

    Article  CAS  PubMed  Google Scholar 

  30. Ducloy-Bouthors AS, BJude B, Duhamel A, Broisin F, Huissoud C, Keita-Meyer H, Mandelbrot L, Tillouche N, Fontaine S, Le Goueff F, Depret-Mosser S, Vallet B, for The EXADELI Study Group, Susen, S. High-dose tranexamic acid reduces blood loss in postpartum haemorrhage. Critical Care 2011, 15:R117 (http://ccforum.com/content/15/2/R117)

  31. EbMN: (http://www.ebm-netzwerk.de/pdf/zahnsplitter/22.pdf) (Zugriff 29.08.2014)

  32. Fu DJ, Chen C, Guo L, Yang L. Use of intravenous tranexamic acid in total knee arthroplasty: a meta-analysis of randomized controlled trials. Chin J Traumatol. 2013;16:67–76

    PubMed  Google Scholar 

  33. Gaberel T, Magheru C, Emery E, Derlon JM. Antifibrinolytic therapy in the management of aneurismal subarachnoid hemorrhage revisited. A meta-analysis Acta Neurochirurgica 2012;154:1–9

    Google Scholar 

  34. Gaillard S, Dupuis-Girod S, Boutitie F, Rivière S, Morinière S, Hatron PY, Manfredi G, Kaminsky P, Capitaine AL, Roy P, Gueyffier F, Plauchu H; ATERO Study Group. Tranexamic acid for epistaxis in hereditary hemorrhagic telangiectasia patients: a European cross-over controlled trial in a rare disease. J Thromb Haemost. 2014;12:1494–502

    Article  CAS  Google Scholar 

  35. Gandhi R1, Evans HM, Mahomed SR, Mahomed NN. Tranexamic acid and the reduction of blood loss in total knee and hip arthroplasty: a meta-analysis. BMC Res Notes. 2013;6:184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Geisthoff UW, Seyfert UT, Kübler M, Bieg B, Plinkert PK, König J. Treatment of epistaxis in hereditary hemorrhagic telangiectasia with tranexamic acid - a double-blind placebo-controlled cross-over phase IIIB study. Thromb Res. 2014;134:565–71

    Article  CAS  PubMed  Google Scholar 

  37. Gillette BP, Maradit Kremers H, Duncan CM, Smith HM, Trousdale RT, Pagnano MW, Sierra RJ. Economic impact of tranexamic acid in healthy patients undergoing primary total hip and knee arthroplasty. J Arthroplasty. 2013;28(8 Suppl):137–9

    Article  PubMed  Google Scholar 

  38. Gluud LL, Klingenberg SL, Langholz E. Tranexamic acid for upper gastrointestinal bleeding. Cochrane Database of Systematic Reviews 2012, Issue 1. Art. No.: CD006640. DOI: 10.1002/14651858.CD006640.pub2

    Google Scholar 

  39. Goobie SM, Meier PM, Pereira LM, McGowan FX, Prescilla RP, Scharp LA, Rogers GF, Proctor MR, Meara JG, Soriano SG, Zurakowski D, Sethna NF. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology. 2011;114:862–71

    Article  CAS  PubMed  Google Scholar 

  40. Goobie SM, Meier PM, Sethna NF, Soriano SG, Zurakowski D, Samant S, Pereira LM. Population pharmacokinetics of tranexamic acid in paediatric patients undergoing craniosynostosis surgery. Clin Pharmacokinet. 2013;52:267–76

    Article  CAS  PubMed  Google Scholar 

  41. Guerriero C, Cairns J, Perel P, Shakur H, Roberts I; CRASH 2 trial collaborators. Cost-effectiveness analysis of administering tranexamic acid to bleeding trauma patients using evidence from the CRASH-2 trial. PLoS One. 2011;6(5):e18987. doi: 10.1371/journal.pone.0018987

    Google Scholar 

  42. Gurusamy KS, Li J, Sharma D, Davidson BR. Pharmacological interventions to decrease blood loss and blood transfusion requirements for liver resection. Cochrane Database Syst Rev. 2009 Oct 7;(4):CD008085. doi: 10.1002/14651858.CD008085. Review.)

    Google Scholar 

  43. Gurusamy KS, Pissanou T, Pikhart H, Vaughan J, Burroughs AK, Davidson BR. Methods to decrease blood loss and transfusion requirements for liver transplantation. Cochrane Database Syst Rev. 2011 Dec 7;(12):CD009052. doi: 10.1002/14651858.CD009052.pub2. Review.)

    Google Scholar 

  44. Handbook Cochrane Org.: http://handbook.cochrane.org/chapter_9/9_2_3_2_the_standardized_mean_difference.htm

  45. Heesen M, Böhmer J, Klöhr S, Rossaint R, VAN DE Velde M, Dudenhausen JW, Straube S. Prophylactic tranexamic acid in parturients at low risk for post-partum haemorrhage: systematic review and meta-analysis. Acta Anaesthesiol Scand. 2014;58:1075–85

    Article  CAS  PubMed  Google Scholar 

  46. Henry DA, Carless PA, Moxey AJ, O’Connell D, Stokes BJ, Fergusson DA, Ker K. Anti-fibrinolytic use for minimizing perioperative allogeneic blood transfusion. Cochrane Database of Systematic Reviews 2011, Issue 3. Art. No.: CD001886. DOI:10.1002/14651858.CD001886.pub4

    Google Scholar 

  47. Ho KM, Ismail H. Use of intravenous tranexamic acid to reduce allogeneic blood transfusion in tota hip and knee arthroplasty: a meta-analysis. Anaesth Intensive Care. 2003;31:529–37

    CAS  PubMed  Google Scholar 

  48. Huang F, Wu D, Ma G, Yin Z, Wang Q. The use of tranexamic acid to reduce blood loss and transfusion in major orthopedic surgery: a meta-analysis. J Surg Res. 2014;186:318–27

    Article  CAS  PubMed  Google Scholar 

  49. Howes JP, Sharma V, Cohen AT. Tranexamic acid reduces blood loss after knee arthroplasty. J Bone Joint Surg Br. 1996;78:995–6

    Article  CAS  PubMed  Google Scholar 

  50. HZ: Horten Zentrum für praxisorientierte Forschung und Wissenstransfer. (http://www.evimed.ch/glossar/) (Zugriff 27.07.2014)

  51. Irisson E, Hémon Y, Pauly V, Parratte S, Argenson JN, Kerbaul F. Tranexamic acid reduces blood loss and financial cost in primary total hip and knee replacement surgery. Orthop Traumatol Surg Res. 2012;98:477–83

    Article  CAS  PubMed  Google Scholar 

  52. Johansson T, Pettersson LG, Lisander B. Tranexamic acid in total hip arthroplasty saves blood and money. A randomized, double-blind study in 100 patients. Acta Orthopaedica 2005;6:314–19

    Google Scholar 

  53. Ker K, Kiriya J, Perel P, Edwards P, Shakur H, Roberts I. Avoidable mortality from giving tranexamic acid to bleeding trauma patients: an estimation based on WHO mortality data, a systematic literature review and data from the CRASH-2 trial. BMC Emergency Medicine 2012, 12:3. (http://www.biomedcentral.com/1471-227X/12/3)

  54. Ker K, Edwards P, Perel P, Shakur H, Roberts I. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. BMJ. 2012 May 17;344:e3054

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Ker K, Prieto-Merino D, Roberts I. Systematic review, meta-analysis and meta-regression of the effect of tranexamic acid on surgical blood loss. Br J Surg. 2013;100:1271–9

    Article  CAS  PubMed  Google Scholar 

  56. Ker K, Beecher D, Roberts I. Topical application of tranexamic acid for the reduction of bleeding. Cochrane Database Syst Rev. 2013 Jul 23;7:CD010562

    PubMed  Google Scholar 

  57. Kim TK, Chang CB, Koh IJ. Practical issues for the use of tranexamic acid in total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2014;22:1849–58

    Article  PubMed  Google Scholar 

  58. Lethaby A, Farquhar C, Cooke I. Antifibrinolytics for heavy menstrual bleeding. Cochrane Database of Systematic Reviews 2000, Issue 4. Art. No.: CD000249. DOI: 10.1002/14651858.CD000249

    Google Scholar 

  59. Lethaby A, Duckitt K, Farquhar C. Non-steroidal anti-inflammatory drugs for heavy menstrual bleeding. Cochrane Database of Systematic Reviews 2013, Issue 1. Art. No.: CD000400. DOI: 10.1002/14651858.CD000400.pub3

    Google Scholar 

  60. Levine BR, Haughom BD, Belkin MN, Goldstein ZH. Weighted versus uniform dose of tranexamic acid in patients undergoing primary, elective knee arthroplasty: a prospective randomized controlled trial. J Arthroplasty. 2014;29(9 Suppl):186–8

    Article  PubMed  Google Scholar 

  61. Levy JH. Antifibrinolytic therapy: new data and new concepts. Lancet 2010;376:3–4

    Article  PubMed  Google Scholar 

  62. Lier H. Transfusionsmamagement bei Notfall- und Massivtransfusionen. 6.3 Klinische Praxis. In: Singbartl G, Walther-Wenke G. Transfusionspraxis. 2. Aufl. Springer 2014. S. 89–109

    Google Scholar 

  63. Maniar RN, Kumar G, Singhi T, Nayak RM, Maniar PR. Most effective regimen of tranexamic acid in knee arthroplasty: a prospective randomized controlled study in 240 patients. Clin Orthop Relat Res. 2012;470:2605–12

    Article  PubMed Central  PubMed  Google Scholar 

  64. Matteson KA, Rahn DD, Wheeler TL 2nd, Casiano E, Siddiqui NY, Harvie HS, Mamik MM, Balk EM, Sung VW; Society of Gynecologic Surgeons Systematic Review Group. Nonsurgical management of heavy menstrual bleeding: a systematic review. Obstet Gynecol. 2013;121:632–43

    Article  PubMed Central  PubMed  Google Scholar 

  65. MHH–Medizinische Hochschule Hannover. Morbus Osler (Hereditäre Hämorrhagische Telangiektasie)–erbliche Gefäßfehlbildungen. (https://www.mh-hannover.de/16461.html) (Zugriff 25.10.2014)

  66. Molenaar IQ, Warnaar N, Groen H, Tenvergert EM, Slooff MJ, Porte RJ. Efficacy and safety of antifibrinolytic drugs in liver transplantation: a systematic review and meta-analysis. Am J Transplant. 2007;7:185–94. Review

    Article  CAS  PubMed  Google Scholar 

  67. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study. Arch Surg 2012;147:113–19

    Article  CAS  PubMed  Google Scholar 

  68. Mousa HA1, Blum J, Abou El Senoun G, Shakur H, Alfirevic Z. Treatment for primary postpartum haemorrhage. Cochrane Database Syst Rev. 2014 Feb 13;2:CD003249. doi: 10.1002/14651858.CD003249.pub3

    Google Scholar 

  69. Neilipovitz DT, Murto K, Hall L, Barrowman NJ, Splinter WM. A randomized trial of tranexamic acid to reduce blood transfusion for scoliosis surgery. Anesth Analg. 2001;93:82–7

    Article  CAS  PubMed  Google Scholar 

  70. Novikova N, Hofmeyr GJ. Tranexamic acid for preventing postpartum haemorrhage. Cochrane Database Syst Rev. 2010 Jul 7;(7):CD007872. doi: 10.1002/14651858.CD007872.pub2

    PubMed  Google Scholar 

  71. OT: Online-Tutorial zur Evidence-based Medicine. (http://www.medizinalrat.de/Eb_Medicine/eb_medicine.html) (Zugriff 27.07.2014)

  72. Patel JN, Spanyer JM, Smith LS, Huang J, Yakkanti MR, Malkani AL. Comparison of intravenous versus topical tranexamic acid in total knee arthroplasty: a prospective randomized study. J Arthroplasty. 2014;29:1528–31

    Article  PubMed  Google Scholar 

  73. Panteli M, Papakostidis C, Dahabreh Z, Giannoudis PV. Topical tranexamic acid in total knee replacement: a systematic review and meta-analysis. Knee. 2013;20:300–9

    Article  PubMed  Google Scholar 

  74. Peitsidis P, Kadir RA. Antifibrinolytic therapy with tranexamic acid in pregnancy and postpartum. Expert Opin Pharmacother. 2011;12:503–16

    Article  CAS  PubMed  Google Scholar 

  75. Perel P, Al-Shahi Salman R, Kawahara T, Morris Z, Prieto-Merino D, Roberts I, Sandercock P, Shakur H, Wardlaw J. CRASH-2 (Clinical Randomisation of an Antifibrinolytic in Significant Haemorrhage) intracranial bleeding study: the effect of tranexamic acid in traumatic brain injury–a nested randomised, placebo-controlled trial. Health Technol Assess. 2012;16(13):iii–xii, 1–54. doi: 10.3310/hta16130

    Google Scholar 

  76. Perel P, Ker K, Morales Uribe CH, Roberts I. Tranexamic acid for reducing mortality in emergency and urgent surgery. (Cochrane Database of Systematic Reviews 2013, Issue 1. Art. No.: CD010245. DOI: 10.1002/14651858.CD010245.pub2)

    Google Scholar 

  77. Roberts I, Ker K. Tranexamic acid for postpartum bleeding. Int J Gynaecol Obstet. 2011;115:220–1

    Article  PubMed  Google Scholar 

  78. Roberts I, Shakur H, Ker K, Coats T, on behalf of the CRASH-2 Trial collaborators. Antifibrinolytic drugs for acute traumatic injury. Cochrane Database of Systematic Reviews 2012, Issue 12. Art. No.: CD004896. DOI: 10.1002/14651858.CD004896.pub3

    Google Scholar 

  79. Rö JS, Knutrud O, Stormorken H. J. Antifibrinolytic treatment with tranexamic acid (AMCA) in pediatric urinary tract surgery. Pediatr Surg. 1970;5:315–20

    Article  Google Scholar 

  80. Ross J, Al-Shahi Salman R AS. The frequency of thrombotic events among adults given antifibrinolytic drugs for spontaneous bleeding: systematic review and meta-analysis of observational studies and randomized trials. Curr Drug Saf. 2012;7:44–54

    Article  CAS  PubMed  Google Scholar 

  81. Royal College of Paediatrics and Child Health: Evidence statement. Major trauma and the use of tranexamic acid in children. November 2012 (http://www.rcpch.ac.uk/system/files/protected/page/121112_TXA%20evidence%20statement_final%20v2.pdf.)

  82. Schlembach D, Mörtl MG, Girard T, Arzt W, Beinder E, Brezinka C, Chalubinski K, Fries D, Gogarten W, Hackelöer BJ, Helmer H, Henrich W, Hösli I, Husslein P, Kainer F, Lang U, Pfanner G, Rath W, Schleussner E, Steiner H, Surbek D, Zimmermann R. Management der postpartalen Blutung (PPH)–Algorithmus der Interdisziplinären D-A-CH-Konsensusgruppe PPH. Der Anaesthesist 2014;63:234–242)

    Article  CAS  PubMed  Google Scholar 

  83. Schouten ES, van de Pol AC, Schouten AN, Turner NM, Jansen NJ, Bollen CW. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med. 2009;10:182–90

    Article  PubMed  Google Scholar 

  84. Seo JG, Moon YW, Park SH, Kim SM, Ko KR. The comparative efficacies of intra-articular and IV tranexamic acid for reducing blood loss during total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2013;21:1869–74

    Article  PubMed  Google Scholar 

  85. Sentilhes L, Lasocki S, Ducloy-Bouthors AS, Deruelle P, Dreyfus M, Perrotin F, Goffinet F, Deneux-Tharaux C. Tranexamic acid for the prevention and treatment of postpartum haemorrhage Br. J. Anaesth. first published online January 8, 2015 doi:10.1093/bja/aeu448

    Google Scholar 

  86. Sethna NF, Zurakowski D, Brustowicz RM, Bacsik J, Sullivan LJ, Shapiro F. Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology 2005;102:727–32

    Article  CAS  PubMed  Google Scholar 

  87. Shakur H, Elbourne D, Gülmezoglu M, Alfirevic Z, Ronsmans C, Allen E, Roberts I. WOMAN Trial (World Maternal Antifibrinolytic Trial): tranexamic acid for the treatment of postpartum haemorrhage: an international randomised, double blind placebo controlled trial. Trials 2010, 11:40.) (http://www.trialsjournal.com/content/11/1/40)

  88. Song G, Yang P, Zhu S, Luo E, Feng G, Hu J, Li J, Li Y. Tranexamic Acid reducing blood transfusion in children undergoing craniosynostosis surgery. J Craniofac Surg. 2013;24:299–303

    Article  PubMed  Google Scholar 

  89. Song G, Yang P, Hu J, Zhu S, Li Y, Wang Q. The effect of tranexamic acid on blood loss in orthognathic surgery: a meta-analysis of randomized controlled trials. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:595–600

    Article  PubMed  Google Scholar 

  90. Soni A, Saini R, Gulati A, Paul R, Bhatty S, Rajoli SR. Comparison between intravenous and intra-articular regimens of tranexamic acid in reducing blood loss during total knee arthroplasty. J Arthroplasty. 2014;29:1525–7

    Article  PubMed  Google Scholar 

  91. Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G. European Stroke Organization Guidelines for the Management of Intracranial Aneurysmsand Subarachnoid Haemorrhage” (Cerebrovasc Dis 2013;35:93–112.)

    Google Scholar 

  92. Strang CM, Hachenberg Th. Anästhesie in der Urologie–Aktuelle Strategien zur Minimierung von Blutverlusten bei radikaler Prostatektomie. Anästhesiol Intensivmed Notfallmed Schmerzther 2013;48:494–501

    Google Scholar 

  93. Sukeik M, Alshryda S, Haddad FS, Mason JM. Systematic review and meta-analysis of the use of tranexamic acid in total hip replacement. J Bone Joint Surg Br. 2011;93:39–46

    Article  CAS  PubMed  Google Scholar 

  94. Tan J, Chen H, Liu Q, Chen C, Huang W. A meta-analysis of the effectiveness and safety of using tranexamic acid in primary unilateral total knee arthroplasty. J Surg Res. 2013;184:880–7

    Article  CAS  PubMed  Google Scholar 

  95. Tzortzopoulou A, Cepeda MS, Schumann R, Carr DB. Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst Rev. 2008 Jul 16;(3):CD006883. doi: 10.1002/14651858.CD006883.pub2

    Google Scholar 

  96. Verma K, Errico T, Diefenbach C, Hoelscher C, Peters A, Dryer J, Huncke T, Boenigk K, Lonner BS. The relative efficacy of antifibrinolytics in adolescent idiopathic scoliosis: a prospective randomized trial. J Bone Joint Surg Am. 2014;96:e80. doi: 10.2106/JBJS.L.00008

    Article  PubMed  Google Scholar 

  97. Vigna-Taglianti F, Basso L, Rolfo P, Brambilla R, Vaccari F, Lanci G, Russo R. Tranexden amic acid for reducing blood transfusions in arthroplasty interventions: a cost-effective practice. Eur J Orthop Surg Traumatol. 2014;24:545–51

    Article  PubMed  Google Scholar 

  98. Wardrop D, Estcourt LJ, Brunskill SJ, Doree C, Trivella M, Stanworth S, Murphy MF. Antifibrinolytics (lysine analogues) for the prevention of bleeding in patients with haematological disorders. Cochrane Database of Systematic Reviews 2013, Issue 7. Art. No.: CD009733. DOI: 10.1002/14651858.CD009733.pub2

    Google Scholar 

  99. White N, Bayliss S, Moore D. Systematic review of interventions for minimizing perioperative blood transfusion for surgery for craniosynostosis. J Craniofac Surg. 2015;26:26–36

    Article  PubMed  Google Scholar 

  100. Whittaker BW, Christiaans SC, Altice JL, Chen MK, Bartolucci AA, Morgan CJ, Kerby JD, Pittet JF: Early coagulopathy is an independent predictor of mortality in children after severe trauma. Shock 2013, 39:421–426

    Article  PubMed Central  PubMed  Google Scholar 

  101. WHO Model List of Essential Medicines. 17th list (April 2011) 10.2 Medicines affecting coagulation. (http://whqlibdoc.who.int/hq/2011/a95053_eng.pdf?ua ? 1)

  102. WHO recommendations for the prevention and treatment of postpartum haemorrhage. WHO Library Cataloguing-in-Publication Data. WHO recommendations for the prevention and treatment of postpartum haemorrhage. 1. Postpartum hemorrhage–prevention and control. 2. Postpartum hemorrhage–therapy. 3. Obstetric labor complications. 4. Guideline. I. World Health Organization. ISBN 978 92 4 154850 2 (NLM classification: WQ 330) (http://apps.who.int/iris/bitstream/10665/75411/1/9789241548502_eng.pdf) (Zugriff am 04.09.2014)

  103. Xu C, Wu A, Yue Y. Which is more effective in adolescent idiopathic scoliosis surgery: batroxobin, tranexamic acid or a combination? Arch Orthop Trauma Surg. 2012;132:25–31

    Article  PubMed  Google Scholar 

  104. Yagi M, Hasegawa J, Nagoshi N, Iizuka S, Kaneko S, Fukuda K, Takemitsu M, Shioda M, Machida M. Does the intraoperative tranexamic acid decrease operative blood loss during posterior spinal fusion for treatment of adolescent idiopathic scoliosis? Spine (Phila Pa 1976). 2012;37:E1336–42

    Google Scholar 

  105. Yang ZG, Chen WP, Wu LD. Effectiveness and safety of tranexamic acid in reducing blood loss in total knee arthroplasty: a meta-analysis. J Bone Joint Surg Am. 2012;94:1153–9

    Article  PubMed  Google Scholar 

  106. Yutthakasemsunt S, Kittiwatanagul W, Piyavechvirat P, Thinkamrop B, Phuenpathom N, Lumbiganon P. Tranexamic acid for patients with traumatic brain injury: a randomized, double-blinded, placebo-controlled trial. BMC Emerg Medicine 2013. doi: 10.1186/1471-227X-13-20. http://www.biomedcentral.com/1471-227X/13/20)

  107. Zhang H, Chen J, Chen F, Que W. The effect of tranexamic acid on blood loss and use of blood products in total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2012;20:1742–52

    Article  PubMed  Google Scholar 

  108. Zhao-Yu C, Yan G, Wei C, Yuejv L, Ying-Ze Z. Reduced blood loss after intra-articular tranexamic acid injection during total knee arthroplasty: a meta-analysis of the literature. Knee Surg Sports Traumatol Arthrosc. 2013 Dec 19. [Epub ahead of print]

    Google Scholar 

  109. Zhou XD, Tao LJ, Li J, Wu LD. Do we really need tranexamic acid in total hip arthroplasty? A meta-analysis of nineteen randomized controlled trials. Arch Orthop Trauma Surg. 2013;133:1017–27

    Article  PubMed  Google Scholar 

  110. Zufferey P, Merquiol F, Laporte S, Decousus H, Mismetti P, Auboyer C, Samama CM, Molliex S. Do antifibrinolytics reduce allogeneic blood transfusion in orthopedic surgery? Anesthesiology 2006;105:1034–46

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singbartl, G., Singbartl, K., Todt, H., Schindler, E., Martin, K., Tassani-Prell, P. (2016). Antifibrinolytika–Tranexamsäure und Aprotinin. In: Singbartl, G., Singbartl, K. (eds) Transfusionsassoziierte Pharmakotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47258-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47258-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47257-6

  • Online ISBN: 978-3-662-47258-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics