Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 362))

  • 1949 Accesses

Abstract

This study proposed the expression and some feathers of multi-input Hamacher T-norm first, then constructed the multi-input Hamacher T-norm based ANFIS, finally forecasted the stock price of Pingan Bank (000001) from Jan. 4, 2014 to AUG. 28, 2014, by constructing a model based on Multi-input Hamacher T-norm and ANFIS (Adaptive Neuro-Fuzzy Inference System). 5-cross fold validation has been used in this study to recognize the its best performance in MSE (Mean Square Error), MAE (Mean Absolute Error) and MAPE (Mean Absolute Percentage Error) belongs to high prediction accuracy, while it’s also superior to regular ANIFS. Therefore, Multi-input Hamacher T-norm could improve the performance of ANFIS in stock price forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kazem A, Sharifi E et al (2013) Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl Soft Comput 13:947–958

    Article  Google Scholar 

  2. Oliveira FA, Nobre CN, Zárate LE (2013) Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index—case study of PETR4, Petrobras, Brazil. Expert Syst Appl 40:7596–7606

    Article  Google Scholar 

  3. Aghabozorgi S, Teh YW (2014) Stock market co-movement assessment using a three-phase clustering method. Expert Syst Appl 41:1301–1314

    Article  Google Scholar 

  4. Zuo Y, Kita E (2012) Stock price forecast using Bayesian network. Expert Syst Appl 39:6729–6737

    Article  Google Scholar 

  5. Agrawal S, Jindal M, Pillai GN (2010) Momentum analysis based stock market prediction using adaptive neuro-fuzzy inference system (ANFIS). In: The international multiconference of engineers and computer scientists, IMECS

    Google Scholar 

  6. Fahimifard SM, Salarpour M et al (2009) Application of ANFIS to agricultural economic variables forecasting. Case study: poultry retail price. J Artif Intell 2:65–72

    Article  Google Scholar 

  7. Giovanis E (2012) Study of discrete choice models and adaptive neuro-fuzzy inference system in the prediction of economic crisis periods in USA. Econ Anal Policy 42:79–95

    Article  Google Scholar 

  8. Ucenic C, George A (2008) Soft computing methods applied in forecasting of economic indices, case study: Forecasting of greek, unemployment rate using an artificial neural network with fuzzy inference system. In: The 10th WSEAS international conference on mathematical and computation methods in science and engineering (MACMESE’08), Bukurest, Romania

    Google Scholar 

  9. Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank for the support by innovation project of Guangxi Graduate Education (No. YCSZ2014203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyi Zhang .

Editor information

Editors and Affiliations

Appendices

Appendix A

Proof

When \(0 \le j < n\mathrm{{ }}1 \le i \le n\),

\({{\chi }^{j}}({A_n}) = \sum \limits _{{c_1}, \ldots ,{c_j} \in \{ 1, \ldots ,i - 1,i + 1, \ldots ,n\} ,{c_1} \ne \cdots \ne {c_j}} ({a_{{c_1}}}{a_{{c_2}}}{a_{{c_3}}} \cdots {a_{{c_j}}})\)

\( = \sum \limits _{{c_1}, \ldots ,{c_j} \in \{ 1, \ldots ,i - 1,i + 1, \ldots ,n\} ,{c_1} \ne \cdots \ne {c_j}} ({a_{{c_1}}}{a_{{c_2}}}{a_{{c_3}}} \cdots {a_{{c_j}}})\)

\(+ \,{a_i}\sum \limits _{{c_1}, \ldots ,{c_j} - 1 \in \{ 1, \ldots ,i - 1,i + 1, \ldots ,n\} ,{c_1} \ne \cdots \ne {c_{j - 1}}} ({a_{{c_1}}}{a_{{c_2}}}{a_{{c_3}}} \cdots {a_{{c_{j - 1}}}})\)

\( = {\chi ^j}({A_n}\backslash {a_i}) + {a_i}{\chi ^{j - 1}}({A_n}\backslash {a_i})\).

Which completes the proof.

Proof

When \(j \ne n\),

\({\chi ^n}({A_n}) = {a_1}{a_2}{a_3} \cdots {a_n}\) \( = {a_n}({a_1}{a_2}{a_3} \cdots {a_n})\) \( = {a_n}{\chi ^n}({A_n}).\)

Which completes the proof.

Proof

When \(0 \le j < n,1 \le i \le n\),

$$\frac{{\partial {\chi ^j}({A_n})}}{{\partial {a_i}}} = \frac{{\partial {\chi ^j}({A_n}\backslash {a_i})}}{{\partial {a_i}}} + \frac{{\partial ({a_i}{\chi ^{j - 1}}({A_n}\backslash {a_i}))}}{{\partial {a_i}}}= {\chi ^{j - 1}}({A_n}\backslash {a_i}).$$

Which completes the proof.

Appendix B

Proof

\({\lambda _1},{\lambda _2} \in [0, + \infty ]\) and \({\lambda _1} < {\lambda _2}\), when \(n = 1, {T_{{\lambda _1}}}({A_2}) = {T_{{\lambda _1}}}({a_1},{a_2}) \ge {T_{{\lambda _2}}}({a_1},{a_2})\) \( \ge {T_{{\lambda _2}}}({A_2})\). Especially, when \({a_1},{a_2} \ne 1\) and \({a_1},{a_2} \ne 0, {T_\lambda }({A_n})\) is strictly decreasing with respect to \(\lambda \). The proposition is confirmed.

Assume when \(n=t-1\),the proposition is right too, then when \(n=t, {T_{{\lambda _1}}}({A_{t + 1}}) = {T_{{\lambda _1}}}({T_{{\lambda _1}}}({A_t}),{a_{t + 1}}) \ge {T_{{\lambda _1}}}({T_{{\lambda _2}}}({A_t}),{a_{t + 1}}) \ge {T_{{\lambda _2}}}({T_{{\lambda _2}}}({A_t}),{a_{t + 1}}) = {T_{{\lambda _2}}}({A_{t + 1}})\). Especially, when \(\forall i \in [0,n + 1],\mathrm{{ }}{a_i} \ne 1\) and \({a_i} \ne 0,\mathrm{{ }}{T_\lambda }({A_n})\) is strictly decreasing with respect to \(\lambda \).

Proof

The proof is given below: Let

$${\mathrm{{Q}}_n} = {\lambda ^{n - 1}} + \sum \limits _{j = 1}^{n - 1}, {\lambda ^{n - j - 1}}{(1 - \lambda )^j}{\chi ^j}({A_n}) - \sum \limits _{i = 1}^{n - 1} {(1 - \lambda )^i}{\chi ^n}({A_n}),$$

so \({T_\lambda }({A_n}) = \frac{{{\chi ^n}({A_n})}}{{{Q_n}}}.\) When \(n=2\),

$$\begin{aligned} {T_\lambda }({A_2})&~= \frac{{{a_1}{a_2}}}{{\lambda + (1 - \lambda )({a_1} + {a_2} - {a_1}{a_2})}} \\&~= \frac{{{a_1}{a_2}}}{{\lambda + (1 - \lambda )({a_1} + {a_2}) + (\lambda - 1){a_1}{a_2}}} \\&~= \frac{{{\chi ^2}({A_2})}}{{{\lambda ^{2 - 1}} + \sum \limits _{j = 1}^{2 - 1} {\lambda ^{1 - j}}{{(1 - \lambda )}^j}{\chi ^j}({A_2}) - \sum \limits _{i = 1}^{2 - 1} {{(\lambda - 1)}^i}{\chi ^2}({A_2})}} \\&= \frac{{{\chi ^2}({A_2})}}{{{Q_2}}} \end{aligned}$$

The proposition is right.

Assume when \(n=t\), proposition is right too. So, \({T_\lambda }({A_t}) = \frac{{{\chi ^t}({A_t})}}{{{Q_t}}},\)

$$\begin{aligned} {T_\lambda }({A_{t + 1}})&~ = \frac{{\frac{{{\chi ^t}({A_t})}}{{{Q_t}}}{a_{t + 1}}}}{{\lambda + (1 - \lambda )(\frac{{{\chi ^t}({A_t})}}{{{Q_t}}} + {a_{t + 1}}) - (1 - \lambda ){a_{t + 1}}\frac{{{\chi ^t}({A_t})}}{{{Q_t}}}}}\\&~ = \frac{{{\chi ^{t + 1}}({A_{t + 1}})}}{{\lambda {Q_t} + (1 - \lambda ){\chi ^t}({A_t}) - (1 - \lambda ){\chi ^{t + 1}}({A_{t + 1}}) + (1 - \lambda ){a_{t + 1}}{Q_t}}}, \end{aligned}$$

\(\lambda {Q_t} = \lambda \sum \limits _{j = 0}^{t - 1} {\lambda ^{t - j - 1}}{(1 - \lambda )^j}{\chi ^j}({A_t}) + \lambda \frac{{{{(1 - \lambda )}^t} - (1 - \lambda )}}{\lambda }{\chi ^t}({A_t})\)

\( = \sum \limits _{j = 0}^{t - 1} {\lambda ^{t - j}}{(1 - \lambda )^j}{\chi ^j}({A_t}) + [(1 - \lambda {)^t} - (1 - \lambda )]{\chi ^t}({A_t})\),

\((1 - \lambda ){a_{t + 1}}{Q_t} = \sum \limits _{j = 0}^{t - 1} {\lambda ^{t - j - 1}}{(1 - \lambda )^{j + 1}}{a_{t + 1}}{\chi ^{j + 1 - 1}}({A_t}) + \frac{{[(1 - \lambda {)^{t + 1}} - {{(1 - \lambda )}^2}]}}{\lambda }{a_{t + 1}}{\chi ^t}({A_t})\)

\( = \sum \limits _{j = 1}^t {\lambda ^{t - j}}{(1 - \lambda )^j}{a_{t + 1}}{\chi ^{j - 1}}({A_t}) + \frac{{[(1 - \lambda {)^{t + 1}} - {{(1 - \lambda )}^2}]}}{\lambda }{\chi ^{t + 1}}({A_{t + 1}})\)

\(\lambda {Q_t} + (1 - \lambda ){\chi ^t}({A_t}) - (1 - \lambda ){\chi ^{t + 1}}({A_{t + 1}}) + (1 - \lambda ){a_{t + 1}}{Q_t}\)

\( = {\lambda ^t} + \sum \limits _{j = 1}^{t - 1} {\lambda ^{t - j}}{(1 - \lambda )^j}{\chi ^j}({A_t}) + \sum \limits _{j = 1}^t {\lambda ^{t - j}}{(1 - \lambda )^j}{a_{t + 1}}{\chi ^{j - 1}}({A_t})\)

\( +\,[(1 - \lambda {)^t} - (1 - \lambda )]{\chi ^t}({A_t}) + \frac{{[(1 - \lambda {)^{t + 1}} - {{(1 - \lambda )}^2}]}}{\lambda }{a_{t + 1}}{\chi ^{t + 1}}({A_{t + 1}})\)

\( +\,(1 - \lambda ){\chi ^t}({A_t}) - (1 - \lambda ){\chi ^{t + 1}}({A_{t + 1}}))\)

\( = {\lambda ^t} + \sum \limits _{j = 1}^{t - 1} {\lambda ^{t - j}}{(1 - \lambda )^j}({\chi ^j}({A_t}) + {a_{n + 1}}{\chi ^{j - 1}}({A_t})\,+ {(1 - \lambda )^t}f({a_{t + 1}})\chi _{t - 1,f( \cdot )}^{t - 1}({A_t}) + {(1 - \lambda )^t}{\chi ^t}({A_t}) - (1 - \lambda ){\chi ^{t + 1}}({A_{t + 1}})\)

\( + \frac{{[(1 - \lambda {)^{t + 1}} - {{(1 - \lambda )}^2}]}}{\lambda }{\chi ^{t + 1}}({A_{t + 1}})\)

\( = {\lambda ^t} + \sum \limits _{j = 1}^{t - 1} {\lambda ^{t - j}}{(1 - \lambda )^j}{\chi ^j}({A_{t + 1}}) + {(1 - \lambda )^t}({\chi ^t}({A_{t + 1}}) - {\chi ^t}({A_t}) + {(1 - \lambda )^t}{\chi ^t}({A_t}) + \frac{{{{(1 - \lambda )}^{t + 1}} - {{(1 - \lambda )}^2} - \lambda + {\lambda ^2}}}{\lambda }{\chi ^{t + 1}}({A_{t + 1}})\)

\( = {\lambda ^t} + \sum \limits _{j = 1}^{t - 1} {\lambda ^{t - j}}{(1 - \lambda )^j}{\chi ^j}({A_{t + 1}}) + {(1 - \lambda )^t}({\chi ^t}({A_{t + 1}}) - {\chi ^t}({A_t}) + {(1 - \lambda )^t}{\chi ^t}({A_t}) + \frac{{{{(1 - \lambda )}^{t + 1}} - {{(1 - \lambda )}^2} - \lambda + {\lambda ^2}}}{\lambda }{\chi ^{t + 1}}({A_{t + 1}})\)

\( = {\lambda ^t} + \sum \limits _{j = 1}^t {\lambda ^{t - j}}{(1 - \lambda )^j}{\chi ^j}({A_{t + 1}}) + \frac{{{{(1 - \lambda )}^{t + 1}} - (1 - \lambda )}}{\lambda }{\chi ^{t + 1}}({A_{t + 1}})\)

\( = {\lambda ^t} + \sum \limits _{j = 1}^t {\lambda ^{t - j}}{(1 - \lambda )^j}{\chi ^j}({A_{t + 1}}) - \sum \limits _{i = 1}^t {(1 - \lambda )^i}{\chi ^{t + 1}}({A_{t + 1}})\)

\( = {Q_{t + 1}}\).

So, \({T_\lambda }({A_{t + 1}}) = \frac{{{\chi ^{t + 1}}}}{{{Q_{t + 1}}}}\).

In conclusion, when \(n \in {N^ + },{T_\lambda }({A_n}) = \frac{{{\chi ^n}({A_n})}}{{{\lambda ^{n - 1}} + \sum \limits _{j = 1}^{n - 1} {\lambda ^{n - j - 1}}{{(1 - \lambda )}^j}{\chi ^j}({A_n}) - \sum \limits _{i = 1}^{n - 1} {{(1 - \lambda )}^i}{\chi ^n}({A_n})}}\).

Which completes the proof.

Proof

\(\frac{{\partial {Q_n}}}{{\partial \lambda }} = (n - 1){\lambda ^{n - 2}} + \sum \limits _{i = 1}^{n - 1} (n - i - 1){\lambda ^{n - i - 2}}{(1 - \lambda )^i}{\chi ^i}({A_n}) - {\lambda ^{n - i - 1}}{(1 - \lambda )^{i - 1}}\) \(\,{\chi ^i}{A_n} + \sum \limits _{i = 1}^{n - 1} i{(1 - \lambda )^{i - 1}}{\chi ^n}({A_n})\)

\( = (n - 1){\lambda ^{n - 2}} + \sum \limits _{i = 1}^{n - 1} (n - i - 1){\lambda ^{n - i - 2}}{(1 - \lambda )^i}{\chi ^i}({A_n}) - {\lambda ^{n - i - 1}}{(1 - \lambda )^{i - 1}}{\chi ^i}{A_n} + \sum \limits _{i = 1}^{n - 1} i{(1 - \lambda )^{i - 1}}{\chi ^n}({A_n}) + + \sum \limits _{i = 1}^{n - 1} i{(1 - \lambda )^{i - 1}}{\chi ^n}({A_n})\)

\((n - 1){\lambda ^{n - 2}} + \sum \limits _{i = 1}^{n - 1} {\lambda ^{n - i - 2}}{(1 - \lambda )^{i - 1}}((n - 1) - (n - 1)\lambda - i){\chi ^i}({A_n}) + \sum \limits _{i = 1}^{n - 1} i{(1 - \lambda )^{i - 1}}\)

\(\,{\chi ^n}({A_n}) = {R_n}\).

$$\frac{{\partial {T_n}({A_n})}}{{\partial \lambda }} = \frac{{\partial \frac{{{\chi ^n}({A_n})}}{{{Q_n}}}}}{{\partial \lambda }} = \frac{{ - {\chi ^n}({A_n}){R_n}}}{{Q_n^2}}.$$

Which completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, F., Liao, Z. (2015). Stock Price Forecasting Based on Multi-Input Hamacher T-Norm and ANFIS. In: Xu, J., Nickel, S., Machado, V., Hajiyev, A. (eds) Proceedings of the Ninth International Conference on Management Science and Engineering Management. Advances in Intelligent Systems and Computing, vol 362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47241-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47241-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47240-8

  • Online ISBN: 978-3-662-47241-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics