Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Network-based approaches play an increasingly important role in the analysis of data even in systems in which a network representation is not immediately apparent. This is particularly true for linguistic networks, which use to be induced from a linguistic data set for which a network perspective is only one out of several options for representation. Here we introduce a multidimensional framework for network construction and analysis with special focus on linguistic networks. Such a framework is used to show that the higher is the abstraction level of network induction, the harder is the interpretation of the topological indicators used in network analysis. Several examples are provided allowing for the comparison of different linguistic networks as well as to networks in other fields of application of network theory. The computation and the intelligibility of some statistical indicators frequently used in linguistic networks are discussed. It suggests that the field of linguistic networks, by applying statistical tools inspired by network studies in other domains, may, in its current state, have only a limited contribution to the development of linguistic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A.: Systemic risk and stability in financial networks. Tech. rep. National Bureau of Economic Research (2013)

    Google Scholar 

  2. Albert, R., Jeong, H., Barabási, A.-L.: Internet: Diameter of the world-wide web. Nature 401(6749), 130–131 (1999)

    Article  Google Scholar 

  3. Arbesman, S., Strogatz, S.H., Vitevitch, M.S.: Comparative Analysis of Networks of Phonologically Similar Words in English and Spanish. Entropy 12(3), 327–337 (2010), doi:10.3390/e12030327

    Article  Google Scholar 

  4. Bassett, D.S., Bullmore, E.T., Meyer-Lindenberg, A., Apud, J.A., Weinberger, D.R., Coppola, R.: Cognitive fitness of cost-efficient brain functional networks. Proceedings of the National Academy of Sciences 106(28), 11747–11752 (2009)

    Article  Google Scholar 

  5. Bassett, D.S., Gazzaniga, M.S.: Understanding complexity in the human brain. Trends in Cognitive Sciences 15(5), 200–209 (2011), doi:10.1016/j.tics.2011.03.006

    Article  Google Scholar 

  6. Battiston, S., Glattfelder, J.B., Garlaschelli, D., Lillo, F., Caldarelli, G.: The structure of financial networks. In: Network Science, pp. 131–163. Springer (2010)

    Google Scholar 

  7. Blanchard, P., Petroni, F., Serva, M., Volchenkov, D.: Geometric representations of language taxonomies. Computer Speech & Language 25(3), 679–699 (2011), doi:10.1016/j.csl.2010.05.003

    Article  Google Scholar 

  8. Borgatti, S.P.: Centrality and network flow. Social Networks 27(1), 55–71 (2005), doi:10.1016/j.socnet.2004.11.008

    Article  Google Scholar 

  9. Borgatti, S.P., Everett, M.G.: A Graph-theoretic perspective on centrality. Social Networks 28(4), 466–484 (2006), doi: http://dx.doi.org/10.1016/j.socnet.2005.11.005

  10. Borge-Holthoefer, J., Arenas, A.: Categorizing words through semantic memory navigation. The European Physical Journal B 74(2), 265–270 (2010) (English), doi:10.1140/epjb/e2010-00058-9

    Google Scholar 

  11. Boss, M., Elsinger, H., Summer, M., Thurner, S.: An empirical analysis of the network structure of the Austrian interbank market. Oesterreichesche Nationalbank Financial stability Report 7, 77–87 (2004)

    Google Scholar 

  12. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Computer Networks 33(1), 309–320 (2000)

    Article  Google Scholar 

  13. Choudhury, M., Ganguly, N., Maiti, A., Mukherjee, A., Brusch, L., Deutsch, A., Peruani, F.: Modeling discrete combinatorial systems as alphabetic bipartite networks: Theory and applications. Phys. Rev. E 81(3), 036103 (2010), doi:10.1103/PhysRevE.81.036103

    Google Scholar 

  14. Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nature Physics 3(4), 276–282 (2007)

    Article  Google Scholar 

  15. Ferrer i Cancho, R.: Bibliography on linguistic, cognitive and brain networks (2012), http://www.lsi.upc.edu/~rferrericancho/linguistic_and_cognitive_networks.html

  16. Ferrer i Cancho, R., Mehler, A., Pustylnikov, O., Díaz-Guilera, A.: Correlations in the organization of large-scale syntactic dependency networks. In: TextGraphs-2: Graph-Based Algorithms for Natural Language Processing, pp. 65–72 (2007)

    Google Scholar 

  17. Ferrer i Cancho, R., Solé, R.V., Köhler, R.: Patterns in syntactic dependency networks. Phys. Rev. E 69(5), 051915 (2004), doi:10.1103/PhysRevE.69.051915

    Google Scholar 

  18. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proceedings of the National Academy of Sciences 104(1), 36–41 (2007)

    Article  Google Scholar 

  19. Goñi, J., Arrondo, G., Sepulcre, J., Martincorena, I., de Mendizábal, N.V., Corominas-Murtra, B., Bejarano, B., Ardanza-Trevijano, S., Peraita, H., Wall, D.P., Villoslada, P.: The semantic organization of the animal category: evidence from semantic verbal fluency and network theory. Cognitive Processing 12(2), 183–196 (2011) (English), doi:10.1007/s10339-010-0372-x

    Google Scholar 

  20. Grabska-Gradzinska, I., Kulig, A., Kwapien, J., Drozdz, S.: Complex network analysis of literary and scientific texts. International Journal of Modern Physics C 23(07), 1250051 (2012), doi:10.1142/S0129183112500519

    Article  Google Scholar 

  21. Gravino, P., Servedio, V.D.P., Barrat, A., Loreto, V.: Complex Structures and Semantics in Free Word Association. Advances in Complex Systems 15(03n04), 1250054 (2012), doi:10.1142/S0219525912500543

    Google Scholar 

  22. He, H., Sui, J., Yu, Q., Turner, J.A., Ho, B.-C., Sponheim, S.R., Manoach, D.S., Clark, V.P., Calhoun, V.D.: Altered small-world brain networks in schizophrenia patients during working memory performance. PloS One 7(6), e38195 (2012)

    Google Scholar 

  23. Huizinga, H., Nicodème, G.: Are international deposits tax-driven. Journal of Public Economics 88(6), 1093–1118 (2004)

    Article  Google Scholar 

  24. Iyengar, S.R., Veni Madhavan, C.E., Zweig, K.A., Natarajan, A.: Understanding Human Navigation Using Network Analysis. Topics in Cognitive Science 4(1), 121–134 (2012), doi:10.1111/j.1756-8765.2011.01178.x

    Article  Google Scholar 

  25. Kaldor, N.: A model of economic growth. The Economic Journal 67(268), 591–624 (1956)

    Article  Google Scholar 

  26. Konect: OpenFlights network dataset and US airports network dataset – KONECT (2014)

    Google Scholar 

  27. Landauer, T.K., Dutnais, S.T.: A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 211–240 (1997)

    Google Scholar 

  28. Lerner, A., Ogrocki, P.K., Thomas, P.J.: Network Graph Analysis of Category Fluency Testing. Cognitive & Behavioral Neurology 22(1), 45–52 (2009)

    Article  Google Scholar 

  29. Li, W., Cai, X.: Statistical analysis of airport network of China. Physical Review E 69(4), 046106 (2004)

    Google Scholar 

  30. Mantegna, R.N.: Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems 11(1), 193–197 (1999)

    Article  Google Scholar 

  31. McGuire, P., Tarashev, N.: Tracking international bank flows. BIS Quarterly Review, 27–40 (2006)

    Google Scholar 

  32. Mehler, A., Geibel, P., Pustylnikov, O.: Structural classifiers of text types: Towards a novel model of text representation. LDV Forum: Zeitschrift für Computerlinguistik und Sprachtechnologie; GLDV-Journal for Computational Linguistics and Language Technology 22(2), 51–66 (2007)

    Google Scholar 

  33. Menon, V.: Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences 15(10), 483–506 (2011)

    Article  Google Scholar 

  34. Meusel, R., Vigna, S., Lehmberg, O., Bizer, C.: Graph Structure in the Web – Revisited. Accepted paper at the 23rd International World Wide Web Conference (WWW 2014), Web Science Track, Seoul, Korea (April 2014)

    Google Scholar 

  35. Miller, B.A., Bliss, N.T., Wolfe, P.J.: Toward signal processing theory for graphs and non-Euclidean data. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 5414–5417. IEEE (2010)

    Google Scholar 

  36. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  37. Minoiu, C., Reyes, J.A.: Network Analysis of Global Banking: 1978-2009. International Monetary Fund (2011)

    Google Scholar 

  38. Mukherjee, A., Choudhury, M., Basu, A., Ganguly, N.: Self-organization of the Sound Inventories: Analysis and Synthesis of the Occurrence and Co-occurrence Networks of Consonants. Journal of Quantitative Linguistics 16(2), 157–184 (2009), doi:10.1080/09296170902734222

    Article  Google Scholar 

  39. Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The University of South Florida free association, rhyme, and word fragment norms. Behav. Res. Methods. Instrum. Comput. 36(3), 402–407 (2004)

    Article  Google Scholar 

  40. Newman, M.E.J., Barabási, A.-L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton (2003)

    Google Scholar 

  41. Newman, M.E.J.: Detecting community structure in networks. The European Physical Journal B-Condensed Matter and Complex Systems 38(2), 321–330 (2004)

    Article  Google Scholar 

  42. Opsahl, T., Agneessens, F., Skvoretz, J.: Node Centrality in Weighted Networks: Generalizing Degree and Shortest Paths. Social Networks 3(32), 245–251 (2010)

    Article  Google Scholar 

  43. Peng, R.D., Hengartner, N.: Quantitative Analysis of Literary Styles. The American Statistician 56, 2002 (2002)

    Google Scholar 

  44. Podobnik, B., Valentinčič, A., Horvatić, D., Eugene Stanley, H.: Asymmetric Levy flight in financial ratios. Proceedings of the National Academy of Sciences 108(44), 17883–17888 (2011)

    Article  Google Scholar 

  45. Pustylnikov, O.: Guessing Text Type by Structure. In: Proceedings of the 12th ESSLLI Student Session (2007)

    Google Scholar 

  46. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975), doi:10.1145/361219.361220

    Article  Google Scholar 

  47. Salton, G.: Automatic text processing: the transformation, analysis, and retrieval of information by computer. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    Google Scholar 

  48. Serva, M., Petroni, F., Volchenkov, D., Wichmann, S.: Malagasy Dialects and the Peopling of Madagascar. J. R. Soc. Interface 9(66), 54–67 (2011)

    Article  Google Scholar 

  49. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine 30(3), 83–98 (2013)

    Article  Google Scholar 

  50. Soares, M.M., Corso, G., Lucena, L.S.: The network of syllables in Portuguese. Physica A: Statistical Mechanics and its Applications 355(2-4), 678–684 (2005), doi:10.1016/j.physa.2005.03.017

    Article  Google Scholar 

  51. Solé, R.V., Corominas-Murtra, B., Valverde, S., Steels, L.: Language networks: Their structure, function, and evolution. Complexity 15, 20–26 (2010), doi:10.1002/cplx.20305

    Article  Google Scholar 

  52. Soramäki, K., Bech, M.L., Arnold, J., Glass, R.J., Beyeler, W.E.: The topology of interbank payment flows. Physica A: Statistical Mechanics and its Applications 379(1), 317–333 (2007)

    Article  Google Scholar 

  53. Sowa, J.F.: Principles of Semantic Networks. Morgan Kaufmann (1991)

    Google Scholar 

  54. Spelta, A., Araújo, T.: The topology of cross-border exposures:beyond the minimal spanning tree approach. Physica A: Statistical Mechanics and its Applications 391, 5572–5583 (2012)

    Article  Google Scholar 

  55. Sporns, O., Tononi, G., Kötter, R.: The Human Connectome: A Structural Description of the Human Brain. PLoS Comput. Biol. 1(4), e42 (2005), doi:10.1371/journal.pcbi.0010042

    Google Scholar 

  56. Storm, C.: The Semantic Structure of Animal Terms: A Developmental Study. International Journal of Behavioral Development 3(4), 381–407 (1980), doi:10.1177/016502548000300403

    Article  Google Scholar 

  57. Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D.: Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology 4(6), e1000100 (2008)

    Google Scholar 

  58. Vilela Mendes, R., Lima, R., Araújo, T.: A process-reconstruction analysis of market fluctuations. International Journal of Theoretical and Applied Finance 5(08), 797–821 (2002)

    Article  MathSciNet  Google Scholar 

  59. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  60. Yu, S., Liu, H., Xu, C.: Statistical properties of Chinese phonemic networks. Physica A: Statistical Mechanics and its Applications 390(7), 1370–1380 (2011), doi:10.1016/j.physa.2010.12.019

    Article  Google Scholar 

  61. Zamora-López, G., Russo, E., Gleiser, P.M., Zhou, C., Kurths, J.: Characterizing the complexity of brain and mind networks. Philosophical Transactions of the Royal Society A 369(1952), 3730–3747 (2011)

    Article  Google Scholar 

  62. Zhao, X., Liu, Y., Wang, X., Liu, B., Xi, Q., Guo, Q., Jiang, H., Jiang, T., Wang, P.: Disrupted small-world brain networks in moderate Alzheimer’s disease: a resting-state FMRI study. PloS One 7(3), e33540 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Araújo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Araújo, T., Banisch, S. (2016). Multidimensional Analysis of Linguistic Networks. In: Mehler, A., Lücking, A., Banisch, S., Blanchard, P., Job, B. (eds) Towards a Theoretical Framework for Analyzing Complex Linguistic Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47238-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47238-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47237-8

  • Online ISBN: 978-3-662-47238-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics