Skip to main content

Abstract

Vertebral column fractures in the polytraumatized patient represent a heterogeneous group of injuries that vary in both severity and complexity. The timely identification and treatment of patient with these injuries is of the utmost importance as a missed or delayed diagnosis may lead to neurologic deterioration that is often irreversible. The specific set of risks associated with caring for this subset of patients requires collaboration between specialists from multiple disciplines of medicine. As such, all providers treating these severely injured patients should be familiar with key principles used to stabilize, diagnosis, and ultimately treat these injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burney RE, et al. Incidence, characteristics, and outcome of spinal cord injury at trauma centers in North America. Arch Surg. 1993;128(5):596–9.

    Article  CAS  PubMed  Google Scholar 

  2. Advanced trauma life support for doctors ATLS: manuals for coordinators and faculty. Chicago: American College of Surgeons; 2008.

    Google Scholar 

  3. Vaccaro AR, et al. Noncontiguous injuries of the spine. J Spinal Disord. 1992;5(3):320–9.

    Article  CAS  PubMed  Google Scholar 

  4. Davidoff G, et al. Assessment of closed head injury in trauma-related spinal cord injury. Paraplegia. 1986;24(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  5. Gomes E, Araújo R, Carniero A, Dias C, Lecky F, Costa-Pereira A. Mortality distribution in a trauma system: from data to health policy. Eur J Trauma Emerg Surg. 2008;34(6):561–9.

    Article  PubMed  Google Scholar 

  6. Jansson KA, et al. Thoracolumbar vertebral fractures in Sweden: an analysis of 13,496 patients admitted to hospital. Eur J Epidemiol. 2010;25(6):431–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Morris CG, McCoy EP, Lavery GG. Spinal immobilisation for unconscious patients with multiple injuries. BMJ. 2004;329(7464):495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reid DC, et al. Etiology and clinical course of missed spine fractures. J Trauma. 1987;27(9):980–6.

    Article  CAS  PubMed  Google Scholar 

  9. Determination of cervical spine stability in trauma patients. http://www.east.org/tpg/chap3u.pdf. EAST (Easatern Association for the Surgery of Trauma); 2009.

  10. Green BA, Eismont FJ, O'Heir JT. Pre-hospital management of spinal cord injuries. Paraplegia. 1987;25(3):229–38.

    Article  CAS  PubMed  Google Scholar 

  11. Davis JW, et al. Clearing the cervical spine in obtunded patients: the use of dynamic fluoroscopy. J Trauma. 1995;39(3):435–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ching RP, et al. The effect of post-injury spinal position on canal occlusion in a cervical spine burst fracture model. Spine (Phila Pa 1976). 1997;22(15):1710–5.

    Article  CAS  Google Scholar 

  13. Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery. 1999;44(5):1027–39;discussion 1039–40.

    Article  CAS  PubMed  Google Scholar 

  14. Dolan EJ, Tator CH. The effect of blood transfusion, dopamine, and gamma hydroxybutyrate on posttraumatic ischemia of the spinal cord. J Neurosurg. 1982;56(3):350–8.

    Article  CAS  PubMed  Google Scholar 

  15. Ducker TB, Kindt GW, Kempf LG. Pathological findings in acute experimental spinal cord trauma. J Neurosurg. 1971;35(6):700–8.

    Article  CAS  PubMed  Google Scholar 

  16. Waring 3rd WP, et al. 2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med. 2010;33(4):346–52.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Crozier KS, et al. Spinal cord injury: prognosis for ambulation based on sensory examination in patients who are initially motor complete. Arch Phys Med Rehabil. 1991;72(2):119–21.

    CAS  PubMed  Google Scholar 

  18. Kiwerski J, Weiss M. Neurological improvement in traumatic injuries of cervical spinal cord. Paraplegia. 1981;19(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kakulas BA. Pathology of spinal injuries. Cent Nerv Syst Trauma. 1984;1(2):117–29.

    Article  CAS  PubMed  Google Scholar 

  20. Ahn UM, et al. Cauda equina syndrome secondary to lumbar disc herniation: a meta-analysis of surgical outcomes. Spine (Phila Pa 1976). 2000;25(12):1515–22.

    Article  CAS  Google Scholar 

  21. Shapiro S. Medical realities of cauda equina syndrome secondary to lumbar disc herniation. Spine (Phila Pa 1976). 2000;25(3):348–51;discussion 352.

    Article  CAS  Google Scholar 

  22. Schunemann HJ, et al. An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations. Am J Respir Crit Care Med. 2006;174(5):605–14.

    Article  PubMed  Google Scholar 

  23. Gale SC, et al. The inefficiency of plain radiography to evaluate the cervical spine after blunt trauma. J Trauma. 2005;59(5):1121–5.

    Article  PubMed  Google Scholar 

  24. McCulloch PT, et al. Helical computed tomography alone compared with plain radiographs with adjunct computed tomography to evaluate the cervical spine after high-energy trauma. J Bone Joint Surg Am. 2005;87(11):2388–94.

    PubMed  Google Scholar 

  25. Holmes JF, Akkinepalli R. Computed tomography versus plain radiography to screen for cervical spine injury: a meta-analysis. J Trauma. 2005;58(5):902–5.

    Article  PubMed  Google Scholar 

  26. Hauser CJ, et al. Prospective validation of computed tomographic screening of the thoracolumbar spine in trauma. J Trauma. 2003;55(2):228–34;discussion 234–5.

    Article  PubMed  Google Scholar 

  27. Antevil JL, et al. Spiral computed tomography for the initial evaluation of spine trauma: a new standard of care? J Trauma. 2006;61(2):382–7.

    Article  PubMed  Google Scholar 

  28. White AA, Panjabi MM. Clinical biomechanics of the spine. 2nd ed. Philadelphia: Lippincott; 1990. xxiii, 722 p.

    Google Scholar 

  29. Blauth M, et al. Complex injuries of the spine. Orthopade. 1998;27(1):17–31.

    CAS  PubMed  Google Scholar 

  30. McLain RF, Benson DR. Urgent surgical stabilization of spinal fractures in polytrauma patients. Spine (Phila Pa 1976). 1999;24(16):1646–54.

    Article  CAS  Google Scholar 

  31. Rihn JA, et al. A review of the TLICS system: a novel, user-friendly thoracolumbar trauma classification system. Acta Orthop. 2008;79(4):461–6.

    Article  PubMed  Google Scholar 

  32. Fassett DR, Dailey AT, Vaccaro AR. Vertebral artery injuries associated with cervical spine injuries: a review of the literature. J Spinal Disord Tech. 2008;21(4):252–8.

    Article  PubMed  Google Scholar 

  33. Biffl WL, et al. Western trauma association critical decisions in trauma: screening for and treatment of blunt cerebrovascular injuries. J Trauma. 2009;67(6):1150–3.

    Article  PubMed  Google Scholar 

  34. Schmidt OI, et al. Closed head injury–an inflammatory disease? Brain Res Brain Res Rev. 2005;48(2):388–99.

    Article  PubMed  Google Scholar 

  35. Mueller CA, et al. Vertebral artery injuries following cervical spine trauma: a prospective observational study. Eur Spine J. 2011;20(12):2202–9.

    Google Scholar 

  36. Cothren CC, et al. Cervical spine fracture patterns mandating screening to rule out blunt cerebrovascular injury. Surgery. 2007;141(1):76–82.

    Article  PubMed  Google Scholar 

  37. Dunham CM, et al. Risks associated with magnetic resonance imaging and cervical collar in comatose, blunt trauma patients with negative comprehensive cervical spine computed tomography and no apparent spinal deficit. Crit Care. 2008;12(4):R89.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stassen NA, et al. Magnetic resonance imaging in combination with helical computed tomography provides a safe and efficient method of cervical spine clearance in the obtunded trauma patient. J Trauma. 2006;60(1):171–7.

    Article  PubMed  Google Scholar 

  39. Diaz Jr JJ, et al. The early work-up for isolated ligamentous injury of the cervical spine: does computed tomography scan have a role? J Trauma. 2005;59(4):897–903;discussion 903–4.

    Article  PubMed  Google Scholar 

  40. Management of acute spinal cord injuries in an intensive care unit or other monitored setting. Neurosurgery. 2002;50(3 Suppl):S51–7.

    Google Scholar 

  41. Heary RF, et al. Acute stabilization of the cervical spine by halo/vest application facilitates evaluation and treatment of multiple trauma patients. J Trauma. 1992;33(3):445–51.

    Article  CAS  PubMed  Google Scholar 

  42. Barnett GH, Hardy RW. Gardner tongs and cervical traction. Med Instrum. 1982;16(6):291–2.

    CAS  PubMed  Google Scholar 

  43. Gardner WJ. The principle of spring-loaded points for cervical traction. Technical note. J Neurosurg. 1973;39(4):543–4.

    Article  CAS  PubMed  Google Scholar 

  44. Kang M, Vives MJ, Vaccaro AR. The halo vest: principles of application and management of complications. J Spinal Cord Med. 2003;26(3):186–92.

    Article  PubMed  Google Scholar 

  45. Manthey DE. Halo traction device. Emerg Med Clin North Am. 1994;12(3):771–8.

    CAS  PubMed  Google Scholar 

  46. Bracken MB, et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA. 1984;251(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  47. Bracken MB, et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J Neurosurg. 1992;76(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  48. George ER, et al. Failure of methylprednisolone to improve the outcome of spinal cord injuries. Am Surg. 1995;61(8):659–63;discussion 663–4.

    CAS  PubMed  Google Scholar 

  49. Prendergast MR, et al. Massive steroids do not reduce the zone of injury after penetrating spinal cord injury. J Trauma. 1994;37(4):576–9;discussion 579–80.

    Article  CAS  PubMed  Google Scholar 

  50. Qian T, et al. High-dose methylprednisolone may cause myopathy in acute spinal cord injury patients. Spinal Cord. 2005;43(4):199–203.

    Article  CAS  PubMed  Google Scholar 

  51. Schneidereit NP, et al. Utility of screening for blunt vascular neck injuries with computed tomographic angiography. J Trauma. 2006;60(1):209–15;discussion 215–6.

    Article  PubMed  Google Scholar 

  52. Gavin TM, et al. Biomechanical analysis of cervical orthoses in flexion and extension: a comparison of cervical collars and cervical thoracic orthoses. J Rehabil Res Dev. 2003;40(6):527–37.

    Article  PubMed  Google Scholar 

  53. Agabegi SS, Asghar FA, Herkowitz HN. Spinal orthoses. J Am Acad Orthop Surg. 2010;18(11):657–67.

    Article  PubMed  Google Scholar 

  54. Pape HC, et al. Impact of intramedullary instrumentation versus damage control for femoral fractures on immunoinflammatory parameters: prospective randomized analysis by the EPOFF study group. J Trauma. 2003;55(1):7–13.

    Article  PubMed  Google Scholar 

  55. Rupp RE, et al. Thoracic and lumbar fractures associated with femoral shaft fractures in the multiple trauma patient. Occult presentations and implications for femoral fracture stabilization. Spine (Phila Pa 1976). 1994;19(5):556–60.

    Article  CAS  Google Scholar 

  56. Scalea TM, et al. External fixation as a bridge to intramedullary nailing for patients with multiple injuries and with femur fractures: damage control orthopedics. J Trauma. 2000;48(4):613–21;discussion 621–3.

    Article  CAS  PubMed  Google Scholar 

  57. Pape HC, Giannoudis P, Krettek C. The timing of fracture treatment in polytrauma patients: relevance of damage control orthopedic surgery. Am J Surg. 2002;183(6):622–9.

    Article  PubMed  Google Scholar 

  58. Carlson GD, et al. Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery. J Neurotrauma. 1997;14(12):951–62.

    Article  CAS  PubMed  Google Scholar 

  59. Delamarter RB, Sherman J, Carr JB. Pathophysiology of spinal cord injury. Recovery after immediate and delayed decompression. J Bone Joint Surg Am. 1995;77(7):1042–9.

    Article  CAS  PubMed  Google Scholar 

  60. Guha A, et al. Decompression of the spinal cord improves recovery after acute experimental spinal cord compression injury. Paraplegia. 1987;25(4):324–39.

    Article  CAS  PubMed  Google Scholar 

  61. Fehlings MG, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One. 2012;7(2), e32037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaneda K, et al. Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am. 1997;79(1):69–83.

    Article  CAS  PubMed  Google Scholar 

  63. Shono Y, McAfee PC, Cunningham BW. Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems. Spine (Phila Pa 1976). 1994;19(15):1711–22.

    Article  CAS  Google Scholar 

  64. Mann KA, et al. A biomechanical investigation of short segment spinal fixation for burst fractures with varying degrees of posterior disruption. Spine (Phila Pa 1976). 1990;15(6):470–8.

    Article  CAS  Google Scholar 

  65. Stauffer ES, Wood RW, Kelly EG. Gunshot wounds of the spine: the effects of laminectomy. J Bone Joint Surg Am. 1979;61(3):389–92.

    Article  CAS  PubMed  Google Scholar 

  66. Bono CM, Heary RF. Gunshot wounds to the spine. Spine J. 2004;4(2):230–40.

    Article  PubMed  Google Scholar 

  67. Hebert JS, Burnham RS. The effect of polytrauma in persons with traumatic spine injury. A prospective database of spine fractures. Spine (Phila Pa 1976). 2000;25(1):55–60.

    Article  CAS  Google Scholar 

  68. McLain RF, Burkus JK, Benson DR. Segmental instrumentation for thoracic and thoracolumbar fractures: prospective analysis of construct survival and five-year follow-up. Spine J. 2001;1(5):310–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith L. Jackson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jackson, K.L., Van Hal, M., Lee, J.Y., Kang, J.D. (2016). Management of Spinal Fractures. In: Pape, HC., Sanders, R., Borrelli, Jr., J. (eds) The Poly-Traumatized Patient with Fractures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47212-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47212-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47211-8

  • Online ISBN: 978-3-662-47212-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics