Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 897 Accesses

Abstract

In this chapter, at first, the structure and basic properties of graphene have been introduced. Then the preparation methods of graphene and multidimensional assemblies of graphene have been discussed. The current research problems have been proposed, revealing the great significance and potential application of graphene-woven fabrics (GWFs). At last, the main research contents in the book were provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, Obrien SC et al (1985) C-60—Buckminsterfullerene. Nature 318(6042):162–163

    Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Google Scholar 

  3. Hirsch A (2010) The era of carbon allotropes. Nat Mater 9(11):868–871

    Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Google Scholar 

  5. Lui CH, Liu L, Mak KF et al (2009) Ultraflat graphene. Nature 462(7271):339–341

    Google Scholar 

  6. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Google Scholar 

  7. Li D, Kaner RB (2008) Materials science—graphene-based materials. Science 320(5880):1170–1171

    Google Scholar 

  8. Kim J, Cote LJ, Kim F et al (2010) Visualizing graphene based sheets by fluorescence quenching microscopy. J Am Chem Soc 132(1):260–267

    Google Scholar 

  9. Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63

    Google Scholar 

  10. Stolyarova E, Rim KT, Ryu SM et al (2007) High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc Natl Acad Sci USA 104(22):9209–9212

    Google Scholar 

  11. Fujita M, Wakabayashi K, Nakada K et al (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65(7):1920–1923

    Google Scholar 

  12. Nakada K, Fujita M, Dresselhaus G et al (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54(24):17954–17961

    Google Scholar 

  13. McCann E, Fal’Ko VI (2006) Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys Rev Lett 96(0868058)

    Google Scholar 

  14. Lee C, Wei XD, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Google Scholar 

  15. Stankovich S, Dikin DA, Dommett G et al (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Google Scholar 

  16. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    Google Scholar 

  17. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Google Scholar 

  18. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308

    Google Scholar 

  19. Stoller MD, Park SJ, Zhu YW et al (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    Google Scholar 

  20. Balandin AA, Ghosh S, Bao WZ et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Google Scholar 

  21. Schedin F, Geim AK, Morozov SV et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    Google Scholar 

  22. Cao HL, Yu QK, Jauregui LA et al (2010) Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum hall effect and weak localization. Appl Phys Lett 96(25990125): 122106

    Google Scholar 

  23. Qaiumzadeh A, Arabchi N, Asgari R (2008) Quasiparticle properties of graphene in the presence of disorder. Solid State Commun 147(5–6):172–177

    Google Scholar 

  24. Berger C (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196

    Google Scholar 

  25. Pan Y, Zhang HG, Shi DX et al (2009) Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001) (vol 21, pg 2777, 2009). Adv Mater 21(27):2739

    Google Scholar 

  26. Hirata M, Gotou T, Horiuchi S et al (2004) Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42(14):2929–2937

    Google Scholar 

  27. Stankovich S, Piner RD, Chen XQ et al (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158

    Google Scholar 

  28. Li D, Muller MB, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Google Scholar 

  29. Oostinga JB, Heersche HB, Liu XL et al (2008) Gate-induced insulating state in bilayer graphene devices. Nat Mater 7(2):151–157

    Google Scholar 

  30. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Google Scholar 

  31. Tang LH, Wang Y, Li YM et al (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19(17):2782–2789

    Google Scholar 

  32. Nakajima T, Matsuo Y (1994) Formation process and structure of graphite oxide. Carbon 32(3):469–475

    Google Scholar 

  33. Dikin DA, Stankovich S, Zimney EJ et al (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460

    Google Scholar 

  34. Shin HJ, Kim KK, Benayad A et al (2009) Efficient reduction of graphite oxide by sodium borohydrilde and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992

    Google Scholar 

  35. Wang GX, Yang J, Park J et al (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195

    Google Scholar 

  36. Pei SF, Zhao JP, Du JH et al (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15):4466–4474

    Google Scholar 

  37. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Google Scholar 

  38. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491

    Google Scholar 

  39. Williams G, Kamat PV (2009) Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24):13869–13873

    Google Scholar 

  40. Tuan AP, Choi BC, Lim KT et al (2011) A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding. Appl Surf Sci 257(8):3350–3357

    Google Scholar 

  41. Li XL, Zhang GY, Bai XD et al (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538–542

    Google Scholar 

  42. Li XS, Cai WW, An JH et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    Google Scholar 

  43. Yu QK, Lian J, Siriponglert S et al (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93(11310311)

    Google Scholar 

  44. Sutter P, Sadowski JT, Sutter E (2009) Graphene on Pt(111): growth and substrate interaction. Phys Rev B 80(24541124)

    Google Scholar 

  45. Coraux J, N’Diaye AT, Busse C et al (2008) Structural coherency of graphene on Ir(111). Nano Lett 8(2):565–570

    Google Scholar 

  46. Sutter PW, Flege JI, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7(5):406–411

    Google Scholar 

  47. Suk JW, Kitt A, Magnuson CW et al (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924

    Google Scholar 

  48. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Google Scholar 

  49. Li Z, Zhu HW, Xie D et al (2011) Flame synthesis of few-layered graphene/graphite films. Chem Commun 47(12):3520–3522

    Google Scholar 

  50. Jiao LY, Zhang L, Wang XR et al (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880

    Google Scholar 

  51. Kosynkin DV, Higginbotham AL, Sinitskii A et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–875

    Google Scholar 

  52. Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4(1):30–33

    Google Scholar 

  53. Cai JM, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305):470–473

    Google Scholar 

  54. Dato A, Radmilovic V, Lee Z et al (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016

    Google Scholar 

  55. Ando Y, Zhao X, Ohkohchi M (1997) Production of petal-like graphite sheets by hydrogen arc discharge. Carbon 35(1):153–158

    Google Scholar 

  56. Wu CX, Dong GF, Guan LH (2010) Production of graphene sheets by a simple helium arc-discharge. Phys E 42(5):1267–1271

    Google Scholar 

  57. Xu Z, Gao C (2011) Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun 2: 571

    Google Scholar 

  58. Dong ZL, Jiang CC, Cheng HH et al (2012) Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater 24(14):1856–1861

    Google Scholar 

  59. Jang EY, Carretero-Gonzalez J, Choi A et al (2012) Fibers of reduced graphene oxide nanoribbons. Nanotechnology 23(23560123)

    Google Scholar 

  60. Wang R, Hao YF, Wang ZQ et al (2010) Large-diameter graphene nanotubes synthesized using Ni nanowire templates. Nano Lett 10(12):4844–4850

    Google Scholar 

  61. Cong HP, Ren XC, Wang P et al (2012) Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci Rep 2(613)

    Google Scholar 

  62. Xu Z, Sun HY, Zhao XL et al (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25(2):188–193

    Google Scholar 

  63. Li XM, Zhao TS, Wang KL et al (2011) Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 27(19):12164–12171

    Google Scholar 

  64. Carretero-Gonzalez J, Castillo-Martinez E, Dias-Lima M et al (2012) Oriented graphene nanoribbon yarn and sheet from aligned multi-walled carbon nanotube sheets. Adv Mater 24(42):5695–5701

    Google Scholar 

  65. Luo YB, Yuan BF, Yu QW et al (2012) Substrateless graphene fiber: a sorbent for solid-phase microextraction. J Chromatogr A 1268:9–15

    Google Scholar 

  66. Xiang CS, Lu W, Zhu Y et al (2012) Carbon nanotube and graphene nanoribbon-coated conductive kevlar fibers. ACS Appl Mater Interfaces 4(1):131–136

    Google Scholar 

  67. Chen JM, Zou J, Zeng JB et al (2010) Preparation and evaluation of graphene-coated solid-phase microextraction fiber. Anal Chim Acta 678(1):44–49

    Google Scholar 

  68. Xu YX, Sheng KX, Li C et al (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330

    Google Scholar 

  69. Liu F, Seo TS (2010) A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv Funct Mater 20(12):1930–1936

    Google Scholar 

  70. Xi Q, Chen X, Evans DG et al (2012) Gold nanoparticle-embedded porous graphene thin films fabricated via layer-by-layer self-assembly and subsequent thermal annealing for electrochemical sensing. Langmuir 28(25):9885–9892

    Google Scholar 

  71. Zhang LL, Zhao X, Stoller MD et al (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806–1812

    Google Scholar 

  72. El-Kady MF, Strong V, Dubin S et al (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330

    Google Scholar 

  73. Korkut S, Roy-Mayhew JD, Dabbs DM et al (2011) High surface area tapes produced with functionalized graphene. ACS Nano 5(6):5214–5222

    Google Scholar 

  74. Choi BG, Yang M, Hong WH et al (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028

    Google Scholar 

  75. Yoon SM, Choi WM, Baik H et al (2012) Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 6(8):6803–6811

    Google Scholar 

  76. Chen ZP, Ren WC, Gao LB et al (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428

    Google Scholar 

  77. Dimitrakakis GK, Tylianakis E, Froudakis GE (2008) Pillared graphene: a new 3D network nanostructure for enhanced hydrogen storage. Nano Lett 8(10):3166–3170

    Google Scholar 

  78. Li CY, Li Z, Zhu HW et al (2010) Graphene nano-“patches” on a carbon nanotube network for highly transparent/conductive thin film applications. J Phys Chem C 114(33):14008–14012

    Google Scholar 

  79. Fan ZJ, Yan J, Zhi LJ et al (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22(33):3723

    Google Scholar 

  80. Bon SB, Valentini L, Kenny JM et al (2010) Electrodeposition of transparent and conducting graphene/carbon nanotube thin films. Phys Status Solidi A 207(11):2461–2466

    Google Scholar 

  81. Shin MK, Lee B, Kim SH et al (2012) Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat Commun 3(650)

    Google Scholar 

  82. Jeon EK, Yang CS, Shen YF et al (2012) Photoconductivity and enhanced memory effects in hybrid C-60-graphene transistors. Nanotechnology 23(45520245)

    Google Scholar 

  83. Yan J, Wei T, Shao B et al (2010) Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 48(6):1731–1737

    Google Scholar 

  84. Yang JA, Chen JT, Yu SX et al (2010) Synthesis of a graphene nanosheet film with attached amorphous carbon nanoparticles by their simultaneous electrodeposition. Carbon 48(9):2665–2668

    Google Scholar 

  85. Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578

    Google Scholar 

  86. Li XM, Zhu HW, Wang KL et al (2010) Graphene-on-silicon schottky junction solar cells. Adv Mater 22(25):2743

    Google Scholar 

  87. Wang Y, Chen XH, Zhong YL et al (2009) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95(0633026)

    Google Scholar 

  88. Hong WJ, Xu YX, Lu GW et al (2008) Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun 10(10):1555–1558

    Google Scholar 

  89. Yang NL, Zhai J, Wang D et al (2010) Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4(2):887–894

    Google Scholar 

  90. Yan X, Cui X, Li BS et al (2010) Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett 10(5):1869–1873

    Google Scholar 

  91. Schedin F, Geim AK, Morozov SV et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    Google Scholar 

  92. Shafiei M, Spizzirri PG, Arsat R et al (2010) Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J Phys Chem C 114(32):13796–13801

    Google Scholar 

  93. Huang YX, Dong XC, Shi YM et al (2010) Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2(8):1485–1488

    Google Scholar 

  94. Kempaiah R, Chung A, Maheshwari V (2011) Graphene as cellular interface: electromechanical coupling with cells. ACS Nano 5(7):6025–6031

    Google Scholar 

  95. Wen YQ, Peng C, Li D et al (2011) Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range. Chem Commun 47(22):6278–6280

    Google Scholar 

  96. Robinson JT, Zalalutdinov M, Baldwin JW et al (2008) Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett 8(10):3441–3445

    Google Scholar 

  97. Dhiman P, Yavari F, Mi X et al (2011) Harvesting energy from water flow over graphene. Nano Lett 11(8):3123–3127

    Google Scholar 

  98. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27

    Google Scholar 

  99. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Google Scholar 

  100. Stoller MD, Park SJ, Zhu YW et al (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    Google Scholar 

  101. Shi H (1996) Activated carbons and double layer capacitance. Electrochim Acta 41(10):1633–1639

    Google Scholar 

  102. Xia JL, Chen F, Li JH et al (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4(8):505–509

    Google Scholar 

  103. Liu CG, Yu ZN, Neff D et al (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868

    Google Scholar 

  104. Zhu YW, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541

    Google Scholar 

  105. Liu F, Song SY, Xue DF et al (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24(8):1089–1094

    Google Scholar 

  106. Jeong HM, Lee JW, Shin WH et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477

    Google Scholar 

  107. Wu ZS, Wang DW, Ren W et al (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20(20):3595–3602

    Google Scholar 

  108. Zhao X, Zhang LL, Murali S et al (2012) Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6(6):5404–5412

    Google Scholar 

  109. Xu JJ, Wang K, Zu SZ et al (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9):5019–5026

    Google Scholar 

  110. Wang GX, Shen XP, Yao J et al (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8):2049–2053

    Google Scholar 

  111. Cao AN, Liu Z, Chu SS et al (2010) A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv Mater 22(1):103

    Google Scholar 

  112. Lin YM, Dimitrakopoulos C, Jenkins KA et al (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966):662

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, X. (2015). Introduction. In: Synthesis, Properties and Application of Graphene Woven Fabrics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47203-3_1

Download citation

Publish with us

Policies and ethics