Skip to main content

Definition of Complex Hurst and Fractional Analysis for Stock Market Fluctuation

  • Conference paper

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 349))

Abstract

Hurst model has received significant interest in recent years and are being increasingly used to explain the stochastic phenomenon with long term dependency such as stock market fluctuations. Different from existing methods in traditional integer dimension construction, this paper proposes a novel fractional dimension derivation along with the exact algorithm involving the fractional norm definition and the fractional center moment extension, which ends up a complex Hurst parameter. The proposed algorithm provides more granularities in terms of the norm and the center moment that eventually leading to the detail revealing of the underline stock marketing drivers from both real and imaginary angles. The calculation results demonstrate that the complex model is able to distinguish the subtle difference between the stock market performances for the same field that the real model may overlook. We take the e-commence cluster of online related companies as an example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zunino, L., Tabak, B.M., Figliola, A., Pérez, D.G., Garavaglia, M., Rosso, O.A.: A multifractal approach for stock market inefficiency. Physica A 387, 6558–6566 (2008)

    Article  Google Scholar 

  2. Brooks, R.: Elephants Don’t Play Chess. Robotics and Autonomous Systems 6, 3–15 (1990)

    Article  Google Scholar 

  3. Buchanan, B.G.: A (Very) Brief History of Artificial Intelligence. AI Magazine, 53–60 (2005)

    Google Scholar 

  4. Hernandez-Orallo, J., Dowe, D.L.: Measuring Universal Intelligence: Towards an Anytime Intelligence Test. Artificial Intelligence Journal 174(18), 1508–1539 (2010)

    Article  MathSciNet  Google Scholar 

  5. Gerla, G.: Fuzzy Logic Programming and fuzzy control. Studia Logica 79, 231–254 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Davidovitch, L., Parush, A., Shtub, A.: Simulation-based Learning: The Learning-Forgetting-Relearning Process and Impact of Learning History. Computers & Education 50(3), 866–880 (2008)

    Article  Google Scholar 

  7. Peters, E.E.: Fractal Market Analysis: Applying Chaos Theory to Investment and Economics. Wiley (1994)

    Google Scholar 

  8. Chisholm, A.M.: An Introduction to International Capital Markets: Products, Strategies, Participants. Wiley (2009)

    Google Scholar 

  9. Heath, M.T.: Scientific Computing: An Introductory Survey. McGraw-Hill (1997)

    Google Scholar 

  10. Li, M., Zhao, W., Jia, W., Long, D.-Y., Chi, C.-H.: Modeling autocorrelation functions of self-similar teletraffic in communication networks based on optimal approximation in Hilbert space. Applied Mathematical Modeling 27(3), 155–168 (2003)

    Article  MATH  Google Scholar 

  11. Geniting, T., Schlather, M.: Stochastic Models That Separate Fractal Dimension and Hurst Effect. SIAM Review (Print) 46 22, 269–282 (2004)

    Article  Google Scholar 

  12. Gneiting, T., Sasvári, Z., Schlather, M.: Analogies and Correspondences Between Variograms and Covariance Functions. NRCSE. Technical Report Series. NRCSE-TRS No. 056, pp. 617–630 (October 12, 2000)

    Google Scholar 

  13. Kincaid, D., Cheney, W.: Numerical Analysis. American Mathematical Society (2009)

    Google Scholar 

  14. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework. Springer (2001)

    Google Scholar 

  15. Yosida, K.: Functional Analysis, 6th edn. Springer (1980)

    Google Scholar 

  16. Zeidler, E.: Applied Functional Analysis: Applications to Mathematical Physics. Applied Mathematical Sciences 108 (1995)

    Google Scholar 

  17. Lax, P.: Functional Analysis. Wiley-Interscience, New York (2002)

    MATH  Google Scholar 

  18. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Functional Analysis, vol. 1. Academic Press (1980)

    Google Scholar 

  19. Falconer, K.J.: Fractal Geometry-Mathematical Foundations And Applications. John Wiley (1990)

    Google Scholar 

  20. Feder, J.: Fractals. Plenum Press, London (1988)

    Book  MATH  Google Scholar 

  21. Kallenberg, O.: Random Measures, 4th edn. Academic Press, New York (1986)

    Google Scholar 

  22. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Springer, New York (1988)

    MATH  Google Scholar 

  23. Mandelbrot, B.B.: The Fractal Geometry of Nature, New York (1982)

    Google Scholar 

  24. Mehrvar, H.R., Le-Ngove, T., Huang, J.: Performance Evaluation of Bursty Traffic Using Neural Networks. In: Canadian Conference Electrical and Computer Engineers, vol. 2, pp. 955–958 (1996)

    Google Scholar 

  25. Tedeschini Lalli, E.: Sierpinski Triangles in Stone on Medieval Floors in Rome. APLIMAT Journal of Applied Mathematics 4, 114–122 (2011)

    Google Scholar 

  26. Menger, K., Dimensionstheorie, B.G Teubner Publishers (1928)

    Google Scholar 

  27. Menger, K.: Allgemeine Räume, Cartesische Räume. I., Communications to the Amsterdam Academy of Sciences (1926)

    Google Scholar 

  28. Mandelbrot, B.B.: Self-affine fractals and fractal dimension. Physical Script 32, 257–260 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mandelbrot, B.B.: The Random Character of Stock Prices, pp. 165–179. Massachusetts Institute of Technology Press, Cambridge (1964)

    Google Scholar 

  30. Hoel, P.G.: On Indices of Dispersion. Annals of Mathematical Statistics 14(2), 155–162 (1943)

    Article  MathSciNet  Google Scholar 

  31. Gusella, R.: Characterizing the Variability of Arrival Process with Index of Dispersion. IEEE JSAC 9(2), 203–211 (1991)

    Google Scholar 

  32. Hurst, H.E.: Trans. Am. Soc. Civ. Eng. 116, 770 (1951)

    Google Scholar 

  33. Hurst, H.E., Black, R.P., Simaika, Y.M.: Long-term storage: an experimental study. Constable, London (1965)

    Google Scholar 

  34. Huang, J.S., Huang, J.M., Lu, G.Q.: An Interpretation of Quantum Entanglement and the Nature of the Universe. In: ICSS 2014 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zou, Q., Hu, Y., Huang, J.S. (2015). Definition of Complex Hurst and Fractional Analysis for Stock Market Fluctuation. In: Gen, M., Kim, K., Huang, X., Hiroshi, Y. (eds) Industrial Engineering, Management Science and Applications 2015. Lecture Notes in Electrical Engineering, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47200-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47200-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47199-9

  • Online ISBN: 978-3-662-47200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics