Skip to main content

Finite-Chain Graded Modal Logic

  • Chapter
  • First Online:
Modality, Semantics and Interpretations

Part of the book series: Logic in Asia: Studia Logica Library ((LIAA))

  • 433 Accesses

Abstract

Kripke frames are generalized to finite-chain graded frames. The minimal finite-chain graded modal logic is shown to be sound and complete with respect to the class of all finite-chain graded frames. Finite-chain algebras are defined for giving algebraic semantics for this modal logic. A Jónsson-Tarski style representation theorem for finite-chain algebras is proved. This new kind of multimodal logic differs from both classical normal modal logic and graded modal logic. Some results for extensions of the minimal finite-chain graded modal logic are also obtained.

Both authors are supported by the China National Fund for Social Sciences (No. 12CZX054), and Chongqing Funding of Social Sciences (No. 2013YBZX008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This definition of \(\sigma \) was first suggested by Katsuhiko Sano (Japan Advanced Institute of Science and Technology).

References

  1. G. Aucher. A combined system for update logic and belief revision. Master’s thesis, Unviersiteit van Amsterdam, 2003.

    Google Scholar 

  2. C. Baier and J. P. Katoen. Principles of Model Checking. Cambridge MA: MIT Press, 2008.

    Google Scholar 

  3. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2001.

    Google Scholar 

  4. W. D. Blizard. Multiset theory. Notre Dame Journal of Formal Logic, 30(1):36–66, 1988.

    Google Scholar 

  5. F. Bou, F. Esreva, L. Godo, and Rodríguez. On the minumum many-valued modal logic over a finite residuated lattice. Journal of Logic and Computation, 21(5):739–790, 2011.

    Google Scholar 

  6. C. Cerrato. General canonical models for graded normal logics (graded modalities iv). Studia Logica, 49(2):241–252, 1990.

    Google Scholar 

  7. A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford: Clarendon Press, 1997.

    Google Scholar 

  8. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2nd edition, 2002.

    Google Scholar 

  9. F. De Caro. Graded modalities, ii (canonical models). Studia Logica, 47(1):1–10, 1988.

    Google Scholar 

  10. M. Fattorosi-Barnaba and C. Cerrato. Graded modalities. iii (the completeness and compactness of s4\(^0\)). Studia Logica, 47(2):99–110, 1988.

    Google Scholar 

  11. M. Fattorosi-Barnaba and F. De Caro. Graded modalities i. Studia Logica, 44(2):197–221, 1985.

    Google Scholar 

  12. K. Fine. In so many possible worlds. Notre Dame Journal of formal logic, 13(4):516–520, 1972.

    Google Scholar 

  13. R. Goldblatt. Varieties of complex algebras. Annals of Pure and Applied Logic, 44(3):173–242, 1989.

    Google Scholar 

  14. B. Jónnson and A. Tarski. Boolean algebras with operators. part ii. American Journal of Mathematics, 74(1):127–162, 1952.

    Google Scholar 

  15. B. Jónsson and A. Tarski. Boolean algebras with operators. part i. American Journal of Mathematic, 73(4):891–939, 1951.

    Google Scholar 

  16. M. Kracht. Tools and Techniques in Modal Logic. Amsterdam: North-Holland Publishing Co., 1999.

    Google Scholar 

  17. S. Kripke. A completeness theorem in modal logic. The Journal of Symbolic Logic, 24(1):1–14, 1959.

    Google Scholar 

  18. R. Milner. Communicating and Mobile Systems: the pi Calculus. Cambridge University Press, 1999.

    Google Scholar 

  19. H. Sahlqvist. Correspondence and completeness in the first and second-order semantics for modal logic. In Proceedings of the 3rd Scandinavial Logic Symposium, pages 110–143. Uppsala, 1975.

    Google Scholar 

  20. J. van Benthem. Logical Dynamics of Information and Interaction. Cambridge University Press, 2011.

    Google Scholar 

  21. W. Van der Hoek and J. J. C. Meyer. Graded modalities in epistemic logic. In Logical Foundations of Computer Science-Tver ’92, volume LNCS 620, pages 503–514. Springer, Berlin Heidelberg, 1992.

    Google Scholar 

Download references

Acknowledgments

We would like to give our thanks to the anonymous review for very insightful comments which led us to improve the paper. We also thank for the comments from Prof. Wojciech Buszkowski (Poland), Prof. Hiroakira Ono (Japan), and other audience on the occasion of the Second Asian Workshop on Philosophical Logic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ma, M., Wang, S. (2015). Finite-Chain Graded Modal Logic. In: Ju, S., Liu, H., Ono, H. (eds) Modality, Semantics and Interpretations. Logic in Asia: Studia Logica Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47197-5_4

Download citation

Publish with us

Policies and ethics