Skip to main content

Candida Virulence Factors

  • Chapter
Oral Candidosis

Abstract

The prevalence of invasive fungal infections has risen significantly worldwide, and although over 600 fungal species are reported as human pathogens, Candida species are arguably the most frequently isolated and the most important cause of morbidity and mortality in humans. In fact, Candida species are considered the fourth most common cause of hospital-acquired bloodstream infections in the United States. Candida albicans is the principal candidal pathogen; however, infections caused by non-C. albicans (NCAC) species, such as C. glabrata, C. dubliniensis, C. tropicalis, and C. parapsilosis have increased considerably. This changing dynamic in NCAC species has been suggested to be due to their intrinsic resistance toward antifungal drugs when compared with C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertson GD, Niimi M, Cannon RD, Jenkinson HF (1996) Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 40:2835–2841

    PubMed Central  PubMed  Google Scholar 

  • Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, De Groot P, Maccallum D, Odds FC, Schafer W, Klis F, Monod M, Hube B (2006) Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 281:688–694

    PubMed  Google Scholar 

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi – a review. Med Mycol 50:337–345

    PubMed Central  PubMed  Google Scholar 

  • Arslan SG, Akpolat N, Kama JD, Ozer T, Hamamci O (2008) One-year follow-up of the effect of fixed orthodontic treatment on colonization by oral Candida. J Oral Pathol Med 37:26–29

    PubMed  Google Scholar 

  • Ben-Ami R, Kontoyiannis DP (2012) Resistance to echinocandins comes at a cost. The impact of FKS1 hotspot mutations on Candida albicans fitness and virulence. Virulence 3:95–97

    PubMed Central  PubMed  Google Scholar 

  • Ben-Ami R, Garcia-Effron G, Lewis RE, Gamarra S, Leventakos K, Perlin DS, Kontoyiannis DP (2011) Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. J Infect Dis 204:626–635

    PubMed Central  PubMed  Google Scholar 

  • Borg M, Ruchel R (1990) Demonstration of fungal proteinase during phagocytosis of Candida albicans and Candida tropicalis. J Med Vet Mycol 28:3–14

    PubMed  Google Scholar 

  • Brand A (2012) Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 2012:517529

    PubMed Central  PubMed  Google Scholar 

  • Brand A, Vacharaksa A, Bendel C, Norton J, Haynes P, Henry-Stanley M, Wells C, Ross K, Gow NA, Gale CA (2008) An internal polarity landmark is important for externally induced hyphal behaviors in Candida albicans. Eukaryot Cell 7:712–720

    PubMed Central  PubMed  Google Scholar 

  • Brown AJ (2012) Stress responses in Candida. Candida and Candidiasis. ASM Press, Washington, DC

    Google Scholar 

  • Burnie JP, Carter TL, Hodgetts SJ, Matthews RC (2006) Fungal heat-shock proteins in human disease. FEMS Microbiol Rev 30:53–88

    PubMed  Google Scholar 

  • Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, De Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA, Lorenz MC, Birren BW, Kellis M, Cuomo CA (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662

    PubMed Central  PubMed  Google Scholar 

  • Cassone A, De Bernardis F, Pontieri E, Carruba G, Girmenia C, Martino P, Fernandez-Rodriguez M, Quindos G, Ponton J (1995) Biotype diversity of Candida parapsilosis and its relationship to the clinical source and experimental pathogenicity. J Infect Dis 171:967–975

    PubMed  Google Scholar 

  • Chakrabarti A, Nayak N, Talwar P (1991) In vitro proteinase production by Candida species. Mycopathologia 114:163–168

    PubMed  Google Scholar 

  • Chau AS, Gurnani M, Hawkinson R, Laverdiere M, Cacciapuoti A, Mcnicholas PM (2005) Inactivation of sterol Delta 5,6-desaturase attenuates virulence in Candida albicans. Antimicrob Agents Chemother 49:3646–3651

    PubMed Central  PubMed  Google Scholar 

  • Chen YL, Brand A, Morrison EL, Silao FG, Bigol UG, Malbas FF Jr, Nett JE, Andes DR, Solis NV, Filler SG, Averette A, Heitman J (2011) Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryot Cell 10:803–819

    PubMed Central  PubMed  Google Scholar 

  • Coco BJ, Bagg J, Cross LJ, Jose A, Cross J, Ramage G (2008) Mixed Candida albicans and Candida glabrata populations associated with the pathogenesis of denture stomatitis. Oral Microbiol Immunol 23:377–383

    PubMed  Google Scholar 

  • Cormack BP, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–582

    PubMed  Google Scholar 

  • Correia A, Lermann U, Teixeira L, Cerca F, Botelho S, Da Costa RM, Sampaio P, Gartner F, Morschhauser J, Vilanova M, Pais C (2010) Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect Immun 78:4839–4849

    PubMed Central  PubMed  Google Scholar 

  • Cowen LE, Singh SD, Kohler JR, Collins C, Zaas AK, Schell WA, Aziz H, Mylonakis E, Perfect JR, Whitesell L, Lindquist S (2009) Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci U S A 106:2818–2823

    PubMed Central  PubMed  Google Scholar 

  • Cutler JE (1991) Putative virulence factors of Candida albicans. Annu Rev Microbiol 45:187–218

    PubMed  Google Scholar 

  • Dagdeviren M, Cerikcioglu N, Karavus M (2005) Acid proteinase, phospholipase and adherence properties of Candida parapsilosis strains isolated from clinical specimens of hospitalised patients. Mycoses 48:321–326

    PubMed  Google Scholar 

  • De Carvalho FG, Silva DS, Hebling J, Spolidorio LC, Spolidorio DM (2006) Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch Oral Biol 51:1024–1028

    PubMed  Google Scholar 

  • De Las Penas A, Pan SJ, Castano I, Alder J, Cregg R, Cormack BP (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17:2245–2258

    PubMed Central  PubMed  Google Scholar 

  • Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151

    PubMed  Google Scholar 

  • Dongari-Bagtzoglou A, Kashleva H, Dwivedi P, Diaz P, Vasilakos J (2009) Characterization of mucosal Candida albicans biofilms. PLoS One 4, e7967

    PubMed Central  PubMed  Google Scholar 

  • Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36

    PubMed  Google Scholar 

  • El-Azizi MA, Starks SE, Khardori N (2004) Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms. J Appl Microbiol 96:1067–1073

    PubMed  Google Scholar 

  • Fiori A, Kucharikova S, Govaert G, Cammue BP, Thevissen K, Van Dijck P (2012) The heat-induced molecular disaggregase Hsp104 of Candida albicans plays a role in biofilm formation and pathogenicity in a worm infection model. Eukaryot Cell 11:1012–1020

    PubMed Central  PubMed  Google Scholar 

  • Fu Y, Ibrahim AS, Fonzi W, Zhou X, Ramos CF, Ghannoum MA (1997) Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans. Microbiology-UK 143:331–340

    Google Scholar 

  • Gacser A, Trofa D, Schafer W, Nosanchuk JD (2007) Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest 117:3049–3058

    PubMed Central  PubMed  Google Scholar 

  • Galan-Ladero MA, Blanco MT, Sacristan B, Fernandez-Calderon MC, Perez-Giraldo C, Gomez-Garcia AC (2010) Enzymatic activities of Candida tropicalis isolated from hospitalized patients. Med Mycol 48:207–210

    PubMed  Google Scholar 

  • Ganguly S, Mitchell AP (2011) Mucosal biofilms of Candida albicans. Curr Opin Microbiol 14:380–385

    PubMed Central  PubMed  Google Scholar 

  • Gasparoto TH, Vieira NA, Porto VC, Campanelli AP, Lara VS (2009) Ageing exacerbates damage of systemic and salivary neutrophils from patients presenting Candida-related denture stomatitis. Immun Ageing 6:3

    PubMed Central  PubMed  Google Scholar 

  • Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13:122–143, Table of contents

    PubMed Central  PubMed  Google Scholar 

  • Gow NA, Perera TH, Sherwood-Higham J, Gooday GW, Gregory DW, Marshall D (1994) Investigation of touch-sensitive responses by hyphae of the human pathogenic fungus Candida albicans. Scanning Microsc 8:705–710

    PubMed  Google Scholar 

  • Gow NA, Brown AJ, Odds FC (2002) Fungal morphogenesis and host invasion. Curr Opin Microbiol 5:366–371

    PubMed  Google Scholar 

  • Hoyer LL, Fundyga R, Hecht JE, Kapteyn JC, Klis FM, Arnold J (2001) Characterization of agglutinin-like sequence genes from non-albicans Candida and phylogenetic analysis of the ALS family. Genetics 157:1555–1567

    PubMed Central  PubMed  Google Scholar 

  • Hromatka BS, Noble SM, Johnson AD (2005) Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 16:4814–4826

    PubMed Central  PubMed  Google Scholar 

  • Hube B, Naglik J (2001) Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 147:1997–2005

    PubMed  Google Scholar 

  • Hube B, Monod M, Schofield DA, Brown AJ, Gow NA (1994) Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 14:87–99

    PubMed  Google Scholar 

  • Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, Schafer W (2000) Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol 174:362–374

    PubMed  Google Scholar 

  • Hwang CS, Rhie GE, Oh JH, Huh WK, Yim HS, Kang SO (2002) Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148:3705–3713

    PubMed  Google Scholar 

  • Jacobsen ID, Wilson D, Wachtler B, Brunke S, Naglik JR, Hube B (2012) Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 10:85–93

    PubMed  Google Scholar 

  • Jayatilake JA, Samaranayake YH, Cheung LK, Samaranayake LP (2006) Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. J Oral Pathol Med 35:484–491

    PubMed  Google Scholar 

  • Kantarcioglu AS, Yucel A (2002) Phospholipase and protease activities in clinical Candida isolates with reference to the sources of strains. Mycoses 45:160–165

    PubMed  Google Scholar 

  • Kumamoto CA (2002) Candida biofilms. Curr Opin Microbiol 5:608–611

    PubMed  Google Scholar 

  • Larone D (2002a) Medically important fungi; a guide to identification. ASM Press, Washington, DC

    Google Scholar 

  • Larone D (2002b) Medically important fungi: a guide to identification. ASM Press, Washington, DC

    Google Scholar 

  • Lass-Florl C (2009) The changing face of epidemiology of invasive fungal disease in Europe. Mycoses 52:197–205

    PubMed  Google Scholar 

  • Leach MD, Stead DA, Argo E, Brown AJ (2011) Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans. Mol Biol Cell 22:687–702

    PubMed  Google Scholar 

  • Leonhard M, Moser D, Reumueller A, Mancusi G, Bigenzahn W, Schneider-Stickler B (2010) Comparison of biofilm formation on new Phonax and Provox 2 voice prostheses - a pilot study. Head Neck 32:886–895

    PubMed  Google Scholar 

  • Lermann U, Morschhauser J (2008) Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology 154:3281–3295

    PubMed  Google Scholar 

  • Lewis RE, Viale P, Kontoyiannis DP (2012) The potential impact of antifungal drug resistance mechanisms on the host immune response to Candida. Virulence 3:368–376

    PubMed Central  PubMed  Google Scholar 

  • Li XS, Reddy MS, Baev D, Edgerton M (2003) Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem 278:28553–28561

    PubMed  Google Scholar 

  • Li XS, Sun JN, Okamoto-Shibayama K, Edgerton M (2006) Candida albicans cell wall ssa proteins bind and facilitate import of salivary histatin 5 required for toxicity. J Biol Chem 281:22453–22463

    PubMed  Google Scholar 

  • Li L, Redding S, Dongari-Bagtzoglou A (2007) Candida glabrata: an emerging oral opportunistic pathogen. J Dent Res 86:204–215

    PubMed  Google Scholar 

  • Lopez-Ribot JL, Mcatee RK, Perea S, Kirkpatrick WR, Rinaldi MG, Patterson TF (1999) Multiple resistant phenotypes of Candida albicans coexist during episodes of oropharyngeal candidiasis in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 43:1621–1630

    PubMed Central  PubMed  Google Scholar 

  • Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3:1076–1087

    PubMed Central  PubMed  Google Scholar 

  • Lupetti A, Danesi R, Campa M, Del Tacca M, Kelly S (2002) Molecular basis of resistance to azole antifungals. Trends Mol Med 8:76–81

    PubMed  Google Scholar 

  • Martchenko M, Alarco AM, Harcus D, Whiteway M (2004) Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 15:456–467

    PubMed Central  PubMed  Google Scholar 

  • Martins M, Henriques M, Lopez-Ribot JL, Oliveira R (2012) Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55:80–85

    PubMed Central  PubMed  Google Scholar 

  • Mavor AL, Thewes S, Hube B (2005) Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets 6:863–874

    PubMed  Google Scholar 

  • Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128

    PubMed Central  PubMed  Google Scholar 

  • Merkerova M, Dostal J, Hradilek M, Pichova I, Hruskova-Heidingsfeldova O (2006) Cloning and characterization of Sapp2p, the second aspartic proteinase isoenzyme from Candida parapsilosis. FEMS Yeast Res 6:1018–1026

    PubMed  Google Scholar 

  • Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA (2003) Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333–4340

    PubMed Central  PubMed  Google Scholar 

  • Murciano C, Moyes DL, Runglall M, Tobouti P, Islam A, Hoyer LL, Naglik JR (2012) Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS One 7, e33362

    PubMed Central  PubMed  Google Scholar 

  • Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428, Table of contents

    PubMed Central  PubMed  Google Scholar 

  • Naglik JR, Moyes D, Makwana J, Kanzaria P, Tsichlaki E, Weindl G, Tappuni AR, Rodgers CA, Woodman AJ, Challacombe SJ, Schaller M, Hube B (2008) Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 154:3266–3280

    PubMed  Google Scholar 

  • Negri M, Martins M, Henriques M, Svidzinski TI, Azeredo J, Oliveira R (2010) Examination of potential virulence factors of Candida tropicalis clinical isolates from hospitalized patients. Mycopathologia 169:175–182

    PubMed  Google Scholar 

  • Nett JE, Crawford K, Marchillo K, Andes DR (2010a) Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother 54:3505–3508

    PubMed Central  PubMed  Google Scholar 

  • Nett JE, Sanchez H, Cain MT, Andes DR (2010b) Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis 202:171–175

    PubMed Central  PubMed  Google Scholar 

  • Neugnot V, Moulin G, Dubreucq E, Bigey F (2002) The lipase/acyltransferase from Candida parapsilosis: molecular cloning and characterization of purified recombinant enzymes. Eur J Biochem 269:1734–1745

    PubMed  Google Scholar 

  • Niewerth M, Korting HC (2001) Phospholipases of Candida albicans. Mycoses 44:361–367

    PubMed  Google Scholar 

  • Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138

    PubMed Central  PubMed  Google Scholar 

  • Odds FC (1988) Candida and Candidosis. Bailliere Tindall, London

    Google Scholar 

  • Okawa Y, Goto K (2006) Antigenicity of Candida tropicalis strain cells cultured at 27 and 37 degrees C. FEMS Immunol Med Microbiol 46:438–443

    PubMed  Google Scholar 

  • Oksala E (1990) Factors predisposing to oral yeast infections. Acta Odontol Scand 48:71–74

    PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163

    PubMed Central  PubMed  Google Scholar 

  • Pfaller MA, Boyken L, Hollis RJ, Messer SA, Tendolkar S, Diekema DJ (2005) In vitro susceptibilities of clinical isolates of Candida species, Cryptococcus neoformans, and Aspergillus species to itraconazole: global survey of 9,359 isolates tested by clinical and laboratory standards institute broth microdilution methods. J Clin Microbiol 43:3807–3810

    PubMed Central  PubMed  Google Scholar 

  • Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE, Filler SG (2007) Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. Plos Biol 5:543–557

    Google Scholar 

  • Ramage G, Tomsett K, Wickes BL, Lopez-Ribot JL, Redding SW (2004) Denture stomatitis: a role for Candida biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98:53–59

    PubMed  Google Scholar 

  • Ramage G, Martinez JP, Lopez-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986

    PubMed  Google Scholar 

  • Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35:340–355

    PubMed  Google Scholar 

  • Ramage G, Coco B, Sherry L, Bagg J, Lappin DF (2012a) In vitro Candida albicans biofilm induced proteinase activity and SAP8 expression correlates with in vivo denture stomatitis severity. Mycopathologia 174:11–19

    PubMed  Google Scholar 

  • Ramage G, Rajendran R, Sherry L, Williams C (2012b) Fungal biofilm resistance. Int J Microbiol 2012:528521

    PubMed Central  PubMed  Google Scholar 

  • Rautemaa R, Ramage G (2011) Oral candidosis – clinical challenges of a biofilm disease. Crit Rev Microbiol 37:328–336

    PubMed  Google Scholar 

  • Rodrigues AG, Mardh PA, Pina-Vaz C, Martinez-De-Oliveira J, Da Fonseca AF (1999) Is the lack of concurrence of bacterial vaginosis and vaginal candidosis explained by the presence of bacterial amines? Am J Obstet Gynecol 181:367–370

    PubMed  Google Scholar 

  • Sardi JC, Duque C, Mariano FS, Peixoto IT, Hofling JF, Goncalves RB (2010) Candida spp. in periodontal disease: a brief review. J Oral Sci 52:177–185

    PubMed  Google Scholar 

  • Schaller M, Korting HC, Schafer W, Bastert J, Chen W, Hube B (1999) Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol 34:169–180

    PubMed  Google Scholar 

  • Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, Heitman J, Cowen LE (2009) Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol 19:621–629

    PubMed Central  PubMed  Google Scholar 

  • Shapiro RS, Zaas AK, Betancourt-Quiroz M, Perfect JR, Cowen LE (2012) The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS One 7, e44734

    PubMed Central  PubMed  Google Scholar 

  • Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J (2009a) Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol 47:681–689

    PubMed  Google Scholar 

  • Silva S, Henriques M, Oliveira R, Azeredo J, Malic S, Hooper SJ, Williams DW (2009b) Characterization of Candida parapsilosis infection of an in vitro reconstituted human oral epithelium. Eur J Oral Sci 117:669–675

    PubMed  Google Scholar 

  • Silva S, Hooper SJ, Henriques M, Oliveira R, Azeredo J, Williams DW (2011) The role of secreted aspartyl proteinases in Candida tropicalis invasion and damage of oral mucosa. Clin Microbiol Infect 17:264–272

    PubMed  Google Scholar 

  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36:288–305

    PubMed  Google Scholar 

  • Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE (2009) Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog 5, e1000532

    PubMed Central  PubMed  Google Scholar 

  • Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748

    PubMed  Google Scholar 

  • Sun JN, Solis NV, Phan QT, Bajwa JS, Kashleva H, Thompson A, Liu Y, Dongari-Bagtzoglou A, Edgerton M, Filler SG (2010) Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog 6, e1001181

    PubMed Central  PubMed  Google Scholar 

  • Sundstrom P, Balish E, Allen CM (2002) Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J Infect Dis 185:521–530

    PubMed  Google Scholar 

  • Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8, e1002848

    PubMed Central  PubMed  Google Scholar 

  • Trofa D, Gacser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21:606–625

    PubMed Central  PubMed  Google Scholar 

  • Wachtler B, Wilson D, Haedicke K, Dalle F, Hube B (2011) From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 6, e17046

    PubMed Central  PubMed  Google Scholar 

  • Wachtler B, Citiulo F, Jablonowski N, Forster S, Dalle F, Schaller M, Wilson D, Hube B (2012) Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One 7, e36952

    PubMed Central  PubMed  Google Scholar 

  • Watts HJ, Very AA, Perera TH, Davies JM, Gow NA (1998) Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology 144(Pt 3):689–695

    PubMed  Google Scholar 

  • Wheeler RT, Fink GR (2006) A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2, e35

    PubMed Central  PubMed  Google Scholar 

  • Wysong DR, Christin L, Sugar AM, Robbins PW, Diamond RD (1998) Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect Immun 66:1953–1961

    PubMed Central  PubMed  Google Scholar 

  • Zaugg C, Borg-Von Zepelin M, Reichard U, Sanglard D, Monod M (2001) Secreted aspartic proteinase family of Candida tropicalis. Infect Immun 69:405–412

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Ramage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Donnell, L.E., Robertson, D., Ramage, G. (2015). Candida Virulence Factors. In: Ribeiro Rosa, E. (eds) Oral Candidosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47194-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47194-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47193-7

  • Online ISBN: 978-3-662-47194-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics