Skip to main content

Robotic Application for Pancreatectomy

  • Chapter
  • First Online:
  • 1716 Accesses

Abstract

With improved surgical techniques and understanding of tumor biology, intervention for malignant pancreatic diseases has continued to increase over the past several decades. Concurrently, minimally invasive surgical approaches have been utilized with increasing frequency. However, due to the inherent difficulty associated with pancreatic resections, adoption of minimally invasive techniques has been slower to gain acceptance.

Development of a robotic surgical platform has introduced a new avenue for minimally invasive pancreatic surgery. The robotic approach has proven to be safe and feasible in a wide variety of pancreatic resections. Defined procedure-specific learning curves and established safe dissemination of this technology have allowed adoption of this platform by an increasing number of surgeons, with reports of robotic pancreatic resections continuing to grow. As this technology is in its infancy, long-term outcomes will likely validate the benefit of the robotic approach in surgical management of pancreatic diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Finlayson EV, Birkmeyer JD. Effects of hospital volume on life expectancy after selected cancer operations in older adults: a decision analysis. J Am Coll Surg. 2003;196(3):410–7.

    Article  PubMed  Google Scholar 

  2. Fong Y, et al. Long-term survival is superior after resection for cancer in high-volume centers. Ann Surg. 2005. 242(4):540–4; discussion 544–7.

    Google Scholar 

  3. Gagner M, Pomp A. Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg Endosc. 1994;8(5):408–10.

    Article  CAS  PubMed  Google Scholar 

  4. Croome KP, et al. Total laparoscopic pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: oncologic advantages over open approaches? Ann Surg. 2014. 260(4):633–8; discussion 638–40.

    Google Scholar 

  5. Correa-Gallego C, et al. Minimally-invasive vs open pancreaticoduodenectomy: systematic review and meta-analysis. J Am Coll Surg. 2014;218(1):129–39.

    Article  PubMed  Google Scholar 

  6. Adam MA, et al. Minimally invasive versus open pancreaticoduodenectomy for cancer: practice patterns and short-term outcomes among 7061 patients. Ann Surg. 2015;262(2):372–7.

    Article  PubMed  Google Scholar 

  7. Nussbaum DP, et al. Minimally invasive pancreaticoduodenectomy does not improve use or time to initiation of adjuvant chemotherapy for patients with pancreatic adenocarcinoma. Ann Surg Oncol. 2016;23(3):1026–33.

    Article  PubMed  Google Scholar 

  8. Sharpe SM, et al. Early national experience with laparoscopic pancreaticoduodenectomy for ductal adenocarcinoma: a comparison of laparoscopic pancreaticoduodenectomy and open pancreaticoduodenectomy from the National Cancer Data Base. J Am Coll Surg. 2015;221(1):175–84.

    Article  PubMed  Google Scholar 

  9. Jin T, et al. A systematic review and meta-analysis of studies comparing laparoscopic and open distal pancreatectomy. HPB (Oxford). 2012;14(11):711–24.

    Article  Google Scholar 

  10. Magge D, et al. Comparative effectiveness of minimally invasive and open distal pancreatectomy for ductal adenocarcinoma. JAMA Surg. 2013;148(6):525–31.

    Article  PubMed  Google Scholar 

  11. Sharpe SM, et al. The laparoscopic approach to distal pancreatectomy for ductal adenocarcinoma results in shorter lengths of stay without compromising oncologic outcomes. Am J Surg. 2015;209(3):557–63.

    Article  PubMed  Google Scholar 

  12. Lee SY, et al. Distal pancreatectomy: a single institution's experience in open, laparoscopic, and robotic approaches. J Am Coll Surg. 2015;220(1):18–27.

    Article  PubMed  Google Scholar 

  13. Rehman S, et al. Oncological feasibility of laparoscopic distal pancreatectomy for adenocarcinoma: a single-institution comparative study. World J Surg. 2014;38(2):476–83.

    Article  CAS  PubMed  Google Scholar 

  14. Kwoh YS, et al. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  15. Davies B. A review of robotics in surgery. Proc Inst Mech Eng H. 2000;214(1):129–40.

    Article  CAS  PubMed  Google Scholar 

  16. Spencer EH. The ROBODOC clinical trial: a robotic assistant for total hip arthroplasty. Orthop Nurs. 1996;15(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  17. Giulianotti PC, et al. Robot-assisted laparoscopic pancreatic surgery: single-surgeon experience. Surg Endosc. 2010;24(7):1646–57.

    Article  PubMed  Google Scholar 

  18. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Buchs NC, et al. Robotic versus open pancreaticoduodenectomy: a comparative study at a single institution. World J Surg. 2011;35(12):2739–46.

    Article  PubMed  Google Scholar 

  20. Lai EC, Yang GP, Tang CN. Robot-assisted laparoscopic pancreaticoduodenectomy versus open pancreaticoduodenectomy – a comparative study. Int J Surg. 2012;10(9):475–9.

    Article  PubMed  Google Scholar 

  21. Zhou NX, et al. Outcomes of pancreatoduodenectomy with robotic surgery versus open surgery. Int J Med Robot. 2011;7(2):131–7.

    Article  PubMed  Google Scholar 

  22. DeOliveira ML, et al. Assessment of complications after pancreatic surgery: a novel grading system applied to 633 patients undergoing pancreaticoduodenectomy. Ann Surg. 2006. 244(6):931–7; discussion 937–9.

    Google Scholar 

  23. Cameron JL, He J. Two thousand consecutive pancreaticoduodenectomies. J Am Coll Surg. 2015;220(4):530–6.

    Article  PubMed  Google Scholar 

  24. Winter JM, et al. 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J Gastrointest Surg. 2006. 10(9):1199–210; discussion 1210–1.

    Google Scholar 

  25. Narula VK, Mikami DJ, Melvin WS. Robotic and laparoscopic pancreaticoduodenectomy: a hybrid approach. Pancreas. 2010;39(2):160–4.

    Article  PubMed  Google Scholar 

  26. Chalikonda S, Aguilar-Saavedra JR, Walsh RM. Laparoscopic robotic-assisted pancreaticoduodenectomy: a case-matched comparison with open resection. Surg Endosc. 2012;26(9):2397–402.

    Article  CAS  PubMed  Google Scholar 

  27. Boggi U, et al. Feasibility of robotic pancreaticoduodenectomy. Br J Surg. 2013;100(7):917–25.

    Article  CAS  PubMed  Google Scholar 

  28. Zureikat AH, et al.. 250 robotic pancreatic resections: safety and feasibility. Ann Surg. 2013. 258(4):554–9; discussion 559–62.

    Google Scholar 

  29. Bao PQ, Mazirka PO, Watkins KT. Retrospective comparison of robot-assisted minimally invasive versus open pancreaticoduodenectomy for periampullary neoplasms. J Gastrointest Surg. 2014;18(4):682–9.

    Article  PubMed  Google Scholar 

  30. Boone BA, et al. Assessment of quality outcomes for robotic pancreaticoduodenectomy: identification of the learning curve. JAMA Surg. 2015;150(5):416–22.

    Article  PubMed  Google Scholar 

  31. Lai EC, Tang CN. Robotic distal pancreatectomy versus conventional laparoscopic distal pancreatectomy: a comparative study for short-term outcomes. Front Med. 2015;9(3):356–60.

    Article  PubMed  Google Scholar 

  32. Butturini G, et al. A prospective non-randomised single-center study comparing laparoscopic and robotic distal pancreatectomy. Surg Endosc. 2015;29(11):3163–70.

    Article  PubMed  Google Scholar 

  33. Daouadi M, et al. Robot-assisted minimally invasive distal pancreatectomy is superior to the laparoscopic technique. Ann Surg. 2013;257(1):128–32.

    Article  PubMed  Google Scholar 

  34. Shakir M, et al. The learning curve for robotic distal pancreatectomy: an analysis of outcomes of the first 100 consecutive cases at a high-volume pancreatic centre. HPB (Oxford). 2015;17(7):580–6.

    Article  Google Scholar 

  35. Napoli N, et al. The learning curve in robotic distal pancreatectomy. Updat Surg. 2015;67(3):257–64.

    Article  Google Scholar 

  36. Chen S, et al. Robotic approach improves spleen-preserving rate and shortens postoperative hospital stay of laparoscopic distal pancreatectomy: a matched cohort study. Surg Endosc. 2015;29:3507.

    Article  PubMed  Google Scholar 

  37. Kang CM, et al. Conventional laparoscopic and robot-assisted spleen-preserving pancreatectomy: does da Vinci have clinical advantages? Surg Endosc. 2011;25(6):2004–9.

    Article  PubMed  Google Scholar 

  38. Waters JA, et al. Robotic distal pancreatectomy: cost effective? Surgery. 2010;148(4):814–23.

    Article  PubMed  Google Scholar 

  39. Suman P, Rutledge J, Yiengpruksawan A. Robotic distal pancreatectomy. JSLS. 2013;17(4):627–35.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hwang HK, et al. Robot-assisted spleen-preserving distal pancreatectomy: a single surgeon’s experiences and proposal of clinical application. Surg Endosc. 2013;27(3):774–81.

    Article  PubMed  Google Scholar 

  41. Baca I, Bokan I. Laparoscopic segmental pancreas resection and pancreatic cystadenoma. Chirurg. 2003;74(10):961–5.

    Article  CAS  PubMed  Google Scholar 

  42. Giulianotti PC, et al. Robot-assisted laparoscopic middle pancreatectomy. J Laparoendosc Adv Surg Tech A. 2010;20(2):135–9.

    Article  PubMed  Google Scholar 

  43. Kang CM, et al. Initial experiences using robot-assisted central pancreatectomy with pancreaticogastrostomy: a potential way to advanced laparoscopic pancreatectomy. Surg Endosc. 2011;25(4):1101–6.

    Article  PubMed  Google Scholar 

  44. Abood GJ, et al. Robotic-assisted minimally invasive central pancreatectomy: technique and outcomes. J Gastrointest Surg. 2013;17(5):1002–8.

    Article  PubMed  Google Scholar 

  45. Zhan Q, et al. Robotic-assisted pancreatic resection: a report of 47 cases. Int J Med Robot. 2013;9(1):44–51.

    Article  PubMed  Google Scholar 

  46. Machado MA, et al. Laparoscopic central pancreatectomy: a review of 51 cases. Surg Laparosc Endosc Percutan Tech. 2013;23(6):486–90.

    Article  PubMed  Google Scholar 

  47. Bassi C, et al. Postoperative pancreatic fistula: an international study group (ISGPF) definition. Surgery. 2005;138(1):8–13.

    Article  PubMed  Google Scholar 

  48. Shi Y, et al. Pancreatic enucleation using the da Vinci robotic surgical system: a report of 26 cases. Int J Med Robot. 2015;12:751.

    Article  PubMed  Google Scholar 

  49. Khreiss M, et al. Cyst gastrostomy and necrosectomy for the management of sterile walled-off pancreatic necrosis: a comparison of minimally invasive surgical and endoscopic outcomes at a high-volume pancreatic center. J Gastrointest Surg. 2015;19(8):1441–8.

    Article  PubMed  Google Scholar 

  50. Zureikat AH, et al. Robotic total pancreatectomy with or without autologous islet cell transplantation: replication of an open technique through a minimal access approach. Surg Endosc. 2015;29(1):176–83.

    Article  PubMed  Google Scholar 

  51. Galvani CA, et al. Fully robotic-assisted technique for total pancreatectomy with an autologous islet transplant in chronic pancreatitis patients: results of a first series. J Am Coll Surg. 2014;218(3):e73–8.

    Article  PubMed  Google Scholar 

  52. Geller EJ, Matthews CA. Impact of robotic operative efficiency on profitability. Am J Obstet Gynecol. 2013;209(1):20 e1–5.

    Article  Google Scholar 

  53. Winter ML, et al. Cost comparison of robotic-assisted laparoscopic hysterectomy versus standard laparoscopic hysterectomy. J Robot Surg. 2015;9(4):269–75.

    Article  PubMed  Google Scholar 

  54. Finnegan KT, et al. da Vinci skills simulator construct validation study: correlation of prior robotic experience with overall score and time score simulator performance. Urology. 2012;80(2):330–5.

    Article  PubMed  Google Scholar 

  55. Korets R, et al. Validating the use of the Mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology. 2011;78(6):1326–30.

    Article  PubMed  Google Scholar 

  56. Kelly DC, et al. Face, content, and construct validation of the da Vinci skills simulator. Urology. 2012;79(5):1068–72.

    Article  PubMed  Google Scholar 

  57. Hung AJ, et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. 2012;187(2):630–7.

    Article  PubMed  Google Scholar 

  58. Hung AJ, et al. Face, content and construct validity of a novel robotic surgery simulator. J Urol. 2011;186(3):1019–24.

    Article  PubMed  Google Scholar 

  59. Ramos P, et al. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int. 2014;113(5):836–42.

    Article  PubMed  Google Scholar 

  60. Gonzalez A, et al. A multicenter study of initial experience with single-incision robotic cholecystectomies (SIRC) demonstrating a high success rate in 465 cases. Surg Endosc. 2015;30:2951.

    Article  PubMed  Google Scholar 

  61. Juo YY, Luka S, Obias V. Single-incision robotic colectomy (SIRC): current status and future directions. J Surg Oncol. 2015;112(3):321–5.

    Article  PubMed  Google Scholar 

  62. Fagotti A, et al. Robotic single-site hysterectomy (RSS-H) vs. laparoendoscopic single-site hysterectomy (LESS-H) in early endometrial cancer: a double-institution case-control study. Gynecol Oncol. 2013;130(1):219–23.

    Article  CAS  PubMed  Google Scholar 

  63. Lee GS, et al. Robotic single-site adrenalectomy. Surg Endosc. 2015;30:3351.

    Article  PubMed  Google Scholar 

  64. Okrainec A, et al. Trends and results of the first 5 years of Fundamentals of Laparoscopic Surgery (FLS) certification testing. Surg Endosc. 2011;25(4):1192–8.

    Article  PubMed  Google Scholar 

  65. Stefanidis D, Hope WW, Scott DJ. Robotic suturing on the FLS model possesses construct validity, is less physically demanding, and is favored by more surgeons compared with laparoscopy. Surg Endosc. 2011;25(7):2141–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert J. Zeh MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maggi, J.C., Hogg, M.E., Zeh, H.J., Zureikat, A.H. (2017). Robotic Application for Pancreatectomy. In: Kim, SW., Yamaue, H. (eds) Pancreatic Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47181-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47181-4_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47180-7

  • Online ISBN: 978-3-662-47181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics