Numerical Model Description

  • Yuan WangEmail author
Part of the Springer Theses book series (Springer Theses)


To deal with the cloud systems in the diverse scales, various numerical simulation tools are used in this study. Two distinct modeling frameworks, cloud-resolving model and general circulation model, are employed for different cases on the basis of their own features and limitations. The combination of those two frameworks is also explored and evaluated in this study.


Cloud Droplet Cloud Condensation Nucleus Community Earth System Model Lognormal Size Distribution Bulk Microphysics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdul-Razzak H, Ghan SJ, Rivera-Carpio C (1998) A parameterization of aerosol activation—1. Single aerosol type. J Geophys Res 103(D6):6123–6131CrossRefGoogle Scholar
  2. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107CrossRefGoogle Scholar
  3. Fan J, Leung LR, Li Z, Morrison H, Chen H, Zhou Y, Qian Y, Wang Y (2012) Aerosol impacts on clouds and precipitation in eastern China: results from bin and bulk microphysics. J Geophys Res 117Google Scholar
  4. Khairoutdinov M, Kogan Y (2000) A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon Weather Rev 128(1):229–243CrossRefGoogle Scholar
  5. Khairoutdinov MF, Randall DA (2001) A cloud resolving model as a cloud parameterization in the NCAR community climate system model: preliminary results. Geophys Res Letts 28(18):3617–3620CrossRefGoogle Scholar
  6. Khain A, Ovtchinnikov M, Pinsky M, Pokrovsky A, Krugliak H (2000) Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos Res 55(3–4):159–224CrossRefGoogle Scholar
  7. Khain A, Pokrovsky A, Pinsky M, Seifert A, Phillips V (2004) Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J Atmos Sci 61(24):2963–2982CrossRefGoogle Scholar
  8. Khain A, Rosenfeld D, Pokrovsky A (2005) Aerosol impact on the dynamics and microphysics of deep convective clouds. Q J R Meteorol Soc 131(611):2639–2663CrossRefGoogle Scholar
  9. Khain AP, BenMoshe N, Pokrovsky A (2008) Factors determining the impact of aerosols on surface precipitation from clouds: an attempt at classification. J Atmos Sci 65(6):1721–1748CrossRefGoogle Scholar
  10. Khain AP, Leung LR, Lynn B, Ghan S (2009) Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. J Geophys Res 114(D22). doi: 10.1029/2009JD011902
  11. Kovetz A, Olund B (1969) Effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J Atmos Sci 26(5P2):1060–1065Google Scholar
  12. Li G, Wang Y, Zhang R (2008) Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction. J Geophys Res 113(D15):D15211Google Scholar
  13. Li G, Wang Y, Lee K-H, Diao Y, Zhang R (2009) Impacts of aerosols on the development and precipitation of a mesoscale squall line. J Geophys Res 114(D17):D17205Google Scholar
  14. Liu YG, Daum PH (2004) Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J Atmos Sci 61(13):1539–1548Google Scholar
  15. Liu YG, Daum PH, McGraw R (2004) An analytical expression for predicting the critical radius in the autoconversion parameterization. Geophys Res Lett 31(6)Google Scholar
  16. Lynn BH, Khain AP, Dudhia J, Rosenfeld D, Pokrovsky A, Seifert A (2005) Spectral (Bin) microphysics coupled with a mesoscale model (MM5). Part II: Simulation of a CaPE rain event with a squall line. Mon Weather Rev 133(1):59–71CrossRefGoogle Scholar
  17. Morrison H, Curry JA, Khvorostyanov VI (2005) A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J Atmos Sci 62(6):1665–1677CrossRefGoogle Scholar
  18. Morrison H, Grabowski WW (2007) Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J Atmos Sci 64(8):2839–2861CrossRefGoogle Scholar
  19. Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation. Oxford Press, Oxford, p 914Google Scholar
  20. Solomon A, Morrison H, Persson O, Shupe MD, Bao JW (2009) Investigation of microphysical parameterizations of snow and ice in arctic clouds during M-PACE through model-observation comparisons. Mon Weather Rev 137(9):3110–3128CrossRefGoogle Scholar
  21. Wang M et al (2011a) The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation. Geosci Model Dev 4(1):137–168CrossRefGoogle Scholar
  22. Wang M, Ghan S, Ovchinnikov M, Liu X, Easter R, Kassianov E, Qian Y, Morrison H (2011b) Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF. Atmos Chem Phys 11(11):5431–5455CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations