Skip to main content

Apparatus

  • Chapter
  • First Online:
Book cover Flame Spray Technology

Abstract

One of the most important requisites concerning the FS process is the equipment. All fundamental principles are based on the flame configuration, atomization device, flame temperature, powder collection system, and burner. The wide range of apparatus configurations contribute to the several materials that have been produced by the technique described in this book. As it has a strong influence in the final properties of the product, the description of the different equipments reported in the literature is an important feature. Most of the devices reported in this chapter were built in laboratory facilities, but several companies such as DuPont, Cabot, Degussa, Kemira, Tioxide, Corning Glass, and General Electric have been using their own equipments. The flame spray (FS) equipment can be basically divided in three sub-components: the atomization device, the group of flames, and finally the powder collection system. Each of these devices has its importance in the process of producing powders using the FS method, and all of them have different designs and different sub-components, according to the industry or institution that developed/fabricated the equipment. Thus, in this chapter, the main features of the FS apparatus are discussed, and a special attention was given to the flame device, which is the most important device of the equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CH:

Carbohydrazide

DFH:

N,N-diformylhydrazine

HMT:

Hexamethylenetetramine

ODH:

Oxalyldihydrazine

TFTA:

Tetraformaltrisazine

FS:

Flame spray

FSP:

Flame spray pyrolysis

FTIIR:

Fourier transform infrared spectroscopy

HA:

Hydroxyapatite

HMDSO:

Hexamethyldisiloxane

ITO:

Indium–tin oxide

LPG:

Liquefied petroleum gas

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

TEOS:

Tetraethylorthosilicate

TNB:

Titanium (IV) tert-butoxide

References

  • Chen Y et al (2013) One-step flame synthesis of hydrophobic silica nanoparticles. Powder Tech 235:909–913. doi.org/10.1016/j.powtec.2012.10.021

  • Aromaa M, Keskinen H, Mäkelä JM (2007) The effect of process parameters on the liquid flame spray generated titania nanoparticles. Biomed Eng 24:543–548. doi:10.1016/j.bioeng.2007.08.004

    Google Scholar 

  • Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12:44–50  

    Google Scholar 

  • Aruna ST, Kini NS, Rajam KS (2009) Solution combustion synthesis of CeO2–CeAlO3 nano-composites by mixture-of-fuels approach. Mater Res Bull 44:728–733. doi:10.1016/j.materresbull.2008.09.034

    Article  Google Scholar 

  • Baker C, Kim W, Sanghera J et al (2012) Flame spray synthesis of Lu2O3 nanoparticles. Mater Lett 66:132–134. doi:10.1016/j.matlet.2011.08.058

    Article  Google Scholar 

  • Benfer S, Knözinger E (1999) Structure, morphology and surface properties of nanostructured ZrO2 particles. J Mater Chem 9:1203–1209

    Article  Google Scholar 

  • Benvenutti LH (1999) Mapeamento de radicais excitados e cinética de reação para chamas de etanol. Dissertation, Universidade Estadual de Campinas

    Google Scholar 

  • Bremond N, Clanet C, Villermaux E (2007) Atomization of undulating liquid sheets. J Fluid Mech 585:421–456. doi:10.1017/S0022112007006775

  • Chew SY, Patey TJ, Waser O, Ng SH, Büchel R, Tricoli A, Krumeich F, Wang J, Liu HK, Pratsinis SE, Novák P (2009) Thin nanostructured LiMn2O4 films by flame spray deposition and in situ annealing method. J Power Sources 189:449–453. doi:10.1016/j.jpowsour.2008.12.085

    Article  Google Scholar 

  • Cho JS, Kang YC (2008) Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. J Alloys Compounds 464:282–287

    Article  Google Scholar 

  • Edwards JB (1974) Combustion: the formation and emission of trace species. Ann Arbor Science, USA

    Google Scholar 

  • Edwards DA, Dunbar C (2002) Bioengineering of therapeutic aerosols. Ann Rev Biom Eng v:93–107

    Google Scholar 

  • Ernst FO, Kammler HK, Roessler A et al (2007) Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Mater Chem Phys 101:372–378. doi:10.1016/j.matchemphys.2006.06.014

    Article  Google Scholar 

  • Gaydon AG (1953) Flames: their structure, radiation and temperature. Chapman & Hall, London

    Google Scholar 

  • Guo B, Mukundan M, Yim H (2009) Flame aerosol synthesis of phase-pure monoclinic Y2O3 particles via particle size control. Powder Technol 191:231–234. doi:10.1016/j.powtec.2008.11.003

    Article  Google Scholar 

  • Heine MC, Mädler L, Jossen R, Pratsinis SE (2006) Direct measurement of entrainment during nanoparticle synthesis in spray flames. Comb Flame 144:809–820. doi:10.1016/j.combustflame.2005.09.012

    Article  Google Scholar 

  • Hickey AJ (1996) Inhalation aerosols—physical and biological basis for therapy. Marcel Dekker, USA

    Google Scholar 

  • Hinds WC (1982) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, USA

    Google Scholar 

  • Høj M, Linde K, Hansen TK et al (2011) Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts. App Catal A: General 397:201–208. doi:10.1016/j.apcata.2011.02.034

  • Hu Y, Ding H, Li C (2011) Preparation of hollow alumina nanospheres via surfactant-assisted flame spray pyrolysis. Particuology 9:528–532. doi:10.1016/j.partic.2011.06.003

    Article  Google Scholar 

  • Jang HD, Chang H, Suh Y, Okuyama K (2006) Synthesis of SiO2 nanoparticles from sprayed droplets of tetraethylorthosilicate by the flame spray pyrolysis. Curr Appl Phys 6S1:e110–e113. doi:10.1016/j.cap.2006.01.021

  • Johannessen T, Jensen JR, Mosleh M, Johansen J, Quaade U, Livbjerg H (2004) Flame synthesis of nanoparticles applications in catalysis and product/process engineering. Chem Eng Res Des 82(A11):1444–1452

    Article  Google Scholar 

  • Junior DC (2006) Determinação de temperatura de chama por espectroscopia de emissão. Disseration, Universidade Estadual de Campinas

    Google Scholar 

  • Kang YC, Seo DJ, Park SB, Park HD (2002) Direct synthesis of strontium titanate phosphor particles with high luminescence by flame spray pyrolysis. Mater Res Bull 37:263–269

    Article  Google Scholar 

  • Karthikeyan J, Berndt CC, Tikkanen J, Wang JY, King AH, Herman H (1997) Nanostruct Mater 8:61–74

    Google Scholar 

  • Lenka RK, Mahata T, Sinha PK, Tyagi AK (2008) Combustion synthesis of gadolinia-doped ceria using glycine and urea fuels. J Alloy Compd 466:326–329

    Article  Google Scholar 

  • Marques CST (1996) Distribuição de espécies luminescentes em chamas explosivas de C2H2/O2. Dissertation, Universidade Estadual de Campinas

    Google Scholar 

  • Mekasuwandumrong O, Phothakwanpracha S, Jongsomjit B, Shotipruk A, Panpranot J (2011) Influence of flame conditions on the dispersion of Pd on the flame spray-derived Pd/TiO2 nanoparticles. Powder Technol 210:328–331. doi:10.1016/j.powtec.2011.03.017

    Article  Google Scholar 

  • Memon NK, Tse SD, Chhowalla M, Kear BH (2013) Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films. Proc Combust Inst 34:2163–2170. doi:10.1016/j.proci.2012.06.112

    Article  Google Scholar 

  • Mueller R, Mädler L, Pratsinis SE (2003) Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem Eng Sci 58:1969–1976

    Article  Google Scholar 

  • Mueller R, Kammle HK, Pratsinis SE, Vital A, Beaucage G, Burtscher P (2004) Non-agglomerated dry silica nanoparticles. Powder Tech 140:40–48

    Article  Google Scholar 

  • Muiva CM, Sathiaraj TS, Maabong K (2011) Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram Int 37:555–560. doi:10.1016/j.ceramint.2010.09.042

    Article  Google Scholar 

  • Nandiyanto ABN, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22:1–19. doi:10.1016/j.apt.2010.09.011

    Article  Google Scholar 

  • Ozturk A, Cetegen BM (2005) Experiments on ceramic formation from liquid precursor spray axially injected into an oxy-acetylene flame. Acta Mater 53:5203–5211. doi:10.1016/j.actamat.2005.08.001

    Article  Google Scholar 

  • Pratsinis SE (1997) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sri 24:197–219

    Article  Google Scholar 

  • Qin X, Ju YG, Bernhard S, Yao N (2005) Flame synthesis of Y2O3: Eu nanophosphors using ethanol as precursor solvents. J Mater Res v: 2960–2968

    Google Scholar 

  • Roth P (2007) Particle synthesis in flames. Proc Combust Inst 31:1773–1788. doi:10.1016/j.proci.2006.08.118

    Article  Google Scholar 

  • Rudin T, Wegner K, Pratsinis SE (2013) Towards carbon-free flame spray synthesis of homogeneous oxide nanoparticles from aqueous solutions. Adv Powder Technol 24:632–642. http://dx.doi.org/10.1016/j.apt.2012.11.009

  • Santos LR (2005) Medições de temperatura de chamas de etanol utilizando fluorescência induzida por laser. Disseration, Universidade Estadual de Campinas

    Google Scholar 

  • Sinha A, Nair SR, Sinha PK (2011) Single step synthesis of GdAlO3 powder. J Alloy Compd v:4774–4780

    Google Scholar 

  • Stark WJ, Pratsinis SE (2002) Aerosol flame reactors for manufacture of nanoparticles. Powder Technol 126:103–108

    Article  Google Scholar 

  • Sornek RJ, Dobashi R, Hirano T (2000) Effects of turbulence on dispersion and vaporization of droplets in spray combustion. Procee Comb Inst 28:1055–1062

    Google Scholar 

  • Strobel R, Pratsinis SE (2007) Flame aerosol synthesis of smart nanostructured materials. J Mater Chem 17:4743–4756. doi:10.1039/b711652g

    Article  Google Scholar 

  • Teoh WY (2007) Flame spray synthesis of catalyst nanoparticles for photocatalytic mineralisation of organics and Fischer—Tropsch synthesis. Doctorade Thesis

    Google Scholar 

  • Trommer RM (2011) Obtenção de óxido de zinco nanoestruturado por aspersão de solução em chama e caracterização de propriedades e da atividade fotocatalítica. Dissertation, Universidade Federal do Rio Grande do Sul

    Google Scholar 

  • Trommer RM, Santos LA, Bergmann CP (2007) Alternative technique for hydroxyapatite coatings. Surf Coat Technol 201:9587–9593. doi:10.1016/j.surfcoat.2007.04.028

    Article  Google Scholar 

  • Trommer RM, Santos LA, Bergmann CP (2009) Nanostructured hydroxyapatite powders produced by a flame-based technique. Mater Sci Eng C 29:1770–1775. doi:10.1016/j.msec.2009.02.006

    Article  Google Scholar 

  • Trommer RM, Topolski DK, Takimi AS, Bergmann CP (2010) Evaluation of flame-sprayed alumina powders produced using different ethanol/water ratios in the starting solutions. Part Sci Technol 28:247–261. doi:10.1080/02726351.2010.481587

    Article  Google Scholar 

  • Wegner K, Schimmoeller B, Thiebaut B, Fernandez C, Rao TN (2011) Pilot plants for industrial nanoparticle production by flame spray pyrolysis. Powder Part J 29:251–265

    Article  Google Scholar 

  • Widiyastuti W, Balgis R, Iskandar F, Okuyama K (2010) Nanoparticle formation in spray pyrolysis under low-pressure conditions. Chem Eng Sci 65:1846–1854. doi:10.1016/j.ces.2009.11.026

    Article  Google Scholar 

  • Zhang Y, Li S, Deng S, Yao Q, Tse SD (2012) Direct synthesis of nanostructured TiO2 films with controlled morphologies by stagnation swirl flames. J Aerosol Sci 44:71–82. doi:10.1016/j.jaerosci.2011.10.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael M. Trommer .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trommer, R.M., Bergmann, C.P. (2015). Apparatus. In: Flame Spray Technology. Topics in Mining, Metallurgy and Materials Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47162-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47162-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47161-6

  • Online ISBN: 978-3-662-47162-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics