Skip to main content

Adaptive Resonances Across Scales

  • Chapter
  • First Online:
Decision Science: A Human-Oriented Perspective

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 89))

  • 1277 Accesses

Abstract

Decades ago, Grossberg’s cooperative-competitive models described equally well neurons, competing locally while exhibiting globally coordinated behavior, and production companies in a class of stable competitive markets. Recently, Apolloni posited that the social network is a fractal extension of the brain network. However, little has yet been done to substantiate such ideas. Here we outline an analogy between the ART and ARTMAP neural network operations and some of the essential procedures in leader-electing social organizations. The many similarities point to a possible deep common mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apolloni, B. (2013). Toward a cooperative brain: continuing the work with John Taylor. doi:10.1109/IJCNN.2013.6706715.

    MATH  Google Scholar 

  • Bell, J. (2007). Mirror of the world: A new history of art. New York: Thames and Hudson.

    Google Scholar 

  • Carpenter, G.A. (2003). Default ARTMAP. Proceedings of the International Joint Conference on Neural Networks (IJCNN’03), (pp. 1396–1401). Portland, Oregon.

    Google Scholar 

  • Carpenter, G. A., & Grossberg, S. (1987a). A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37, 54–115.

    Article  MATH  Google Scholar 

  • Carpenter, G. A., & Grossberg, S. (1987b). ART-2: Self-organization of stable category recognition codes for analog input patterns. Applied Optics, 26, 4919–4930.

    Article  Google Scholar 

  • Carpenter, G. A., & Grossberg, S. (1990). ART-3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures. Neural Networks, 3, 129–152.

    Article  Google Scholar 

  • Carpenter, G. A., Grossberg, S., & Rosen, D. B. (1991a). Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks, 4, 759–771.

    Article  Google Scholar 

  • Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991b). ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Networks, 4, 565–588.

    Article  Google Scholar 

  • Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rozen, D. B. (1992). Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks, 3, 698–713.

    Article  Google Scholar 

  • Carpenter, G. A., Milenova, B. L., & Noeske, B. W. (1998). Distributed ARTMAP: A neural network for fast supervised learning. Neural Networks, 11, 793–813.

    Article  Google Scholar 

  • Gould, S. J. (1981). Hyena myths and realities. Natural History, 90(2), 16.

    Google Scholar 

  • Gombrich, E. H. (1972, 1989). The story of art. Oxford: Phaidon Press.

    Google Scholar 

  • Grossberg, S. (1976a). adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biological Cybernetics, 23, 121–134.

    Article  MATH  MathSciNet  Google Scholar 

  • Grossberg, S. (1976b). Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions. Biological Cybernetics, 23, 187–202.

    Article  MATH  MathSciNet  Google Scholar 

  • Grossberg, S. (1980a). Biological competition: Decision rules, pattern formation, and oscillations. Proceedings of the National Academy of Sciences, 77(4), 2338–2342.

    Article  MATH  Google Scholar 

  • Grossberg, S. (1980b). How does a brain build a cognitive code? Psychological Review, 87, 1–51.

    Article  Google Scholar 

  • Grossberg, S. (1982). Studies of mind and brain: Neural principles of learning, perception, development, cognition, and motor control. Boston, MA: Reidel Publishing Co.

    Book  MATH  Google Scholar 

  • Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks, 1, 17–61.

    Article  Google Scholar 

  • Grossberg, S. (2009) Cortical and subcortical predictive dynamics and learning during perception, cognition, emotion, and action. Philosophical Transactions of the Royal Society of London, special issue Predictions in the brain: Using our past to generate a future, 364, 1223–1234.

    Google Scholar 

  • Grossberg, S. (2013). Adaptive resonance theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks, 37, 1–47.

    Article  Google Scholar 

  • Grossberg, S., & Vladushich, T. (2010). How do children learn to follow gaze, share joint attention, imitate their teachers, and use tools during social interactions? Neural Networks, 23, 940–965.

    Article  Google Scholar 

  • Helmholtz, H. von (1866, 1896) Handbuch der Physiologischen Optik. Hamburg und Leipzig: Voss.

    Google Scholar 

  • Kuhn, T. (1962, 1970) The structure of scientific revolutions. Chicago: The University of Chicago Press.

    Google Scholar 

  • Leibniz, G.W. (1714) The Monadology. Translated by George MacDonald Ross, 1999 (quotation from §67).

    Google Scholar 

  • Mandelbrot, B. (1983). The fractal geometry of nature. San Francisco: W.H. Freeman.

    Google Scholar 

  • Sakata, S., & Yamamori, T. (2007). Topological relationships between brain and social networks. Neural Networks, 20, 12–21.

    Article  MATH  Google Scholar 

  • Soros, G. (1988). The alchemy of finance. New York: Simon & Schuster.

    Google Scholar 

  • Soros, G. (1995). Soros on Soros: Staying ahead of the curve. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mengov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mengov, G. (2015). Adaptive Resonances Across Scales. In: Decision Science: A Human-Oriented Perspective. Intelligent Systems Reference Library, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47122-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47122-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47121-0

  • Online ISBN: 978-3-662-47122-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics