Skip to main content

Globale Schwerefeldmodellierung am Beispiel von GOCE

  • Chapter
  • First Online:

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

Zusammenfassung

Die Satellitenmissionen CHAMP, GRACE und GOCE lieferten neuartige Information über das globale Schwerefeld der Erde. In diesem Beitrag werden die wichtigsten Aspekte der Modellierung des statischen Schwerefeldes aus Satellitendaten und die dabei verwendeten statistisch-numerischen Werkzeuge exemplarisch für die GOCE-Mission diskutiert. Die neue Generation von GOCE-Modellen liefert Genauigkeiten von 2–3 cm in Geoidhöhe und 0,7 mGal in Schwereanomalien bei 100 km räumlicher Wellenlänge. Noch höhere räumliche Auflösung wird durch Kombination mit terrestrischen Schwerefeldbeobachtungen erreicht.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Badura, T.: Gravity Field Analysis from Satellite Orbit Information applying the Energy Integral Approach. Dissertation, 109 S., Graz University of Technology. (2006)

    Google Scholar 

  2. Bingham, R.J., Knudsen, P., Andersen, O., Pail, R.: An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys. Res. Lett. 38, EID L01606. Am. Geophys. Union (2011). doi:10.1029/2010GL045633

    Google Scholar 

  3. Bock, H., Jäggi, A., Meyer, U., Visser, P., van den IJssel, J., van, T., Helleputte, M., Heinze, Hugentobler, U.: GPS-derived orbits for the GOCE satellite. J. Geod. 85(11), 807–818 (2011). doi:10.1007/s00190-011-0484-9

    Google Scholar 

  4. Bouman, J., Rispens, S., Gruber, T., Koop, R., Schrama, E., Visser, P.N.A.M., Tscherning, C.C., Veicherts, M.: Preprocessing of gravity gradients at the GOCE high-level processing facility. J. Geod. 83(7), 659–678 (2009). doi:10.1007/s00190-008-0279-9

    Article  Google Scholar 

  5. Braitenberg, C.: Exploration of tectonic structures with GOCE in Africa and across-continents. Int. J. Appl. Earth Obs. Geoinformation, 01/2014; (2015). doi:10.1016/j.jag.2014.01.013

    Google Scholar 

  6. Braitenberg, C., Pivetta, T., Li, Y.: The youngest generation GOCE products in unraveling the mysteries of the crust of North-Central Africa. Geophys. Res. Abs. 14, EGU2012-6022. EGU General Assembly 2012, Vienna (2012)

    Google Scholar 

  7. Brockmann, J.M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., Schuh, W.-D.: (2014) EGM_TIM_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys. Res. Lett., Online 25 Nov 2014. doi:10.1002/2014GL061904

    Google Scholar 

  8. Bruinsma, S.L., Doornbos, E., Bowman, B.R.: Validation of GOCE densities and evaluation of thermosphere models. Adv. Sp. Res. 08/2014, (2014a). doi:10.1016/j.asr.2014.04.008

    Google Scholar 

  9. Bruinsma, S.L., Foerste, C., Abrikosov, O., Marty, J.C., Rio, M.H., Mulet, S., Bonvalot, S.: The new ESA satellite-only gravity field model via the direct approach. Geophys. Res. Lett. 40, 3607–3612 (2013). doi:10.1002/grl.50716

    Article  Google Scholar 

  10. Bruinsma, S.L., Foerste, C., Abrikosov, O., Lemoine, J.M., Marty, J.C., Mulet, S., Rio, M.H., Bonvalot, S.: ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys. Res. Lett. 41(21), 7508–7514 (2014b). doi:10.1002/2014GL062045

    Article  Google Scholar 

  11. Drinkwater, M.R., Floberghagen, R., Haagmans, R., Muzi, D., Popescu, A.: GOCE: ESA’s first earth explorer core mission. In: Beutler, G., Drinkwater, M.R., Rummel, R., von Steiger, R. (Hrsg.) Earth Gravity Field from Space – From Sensors to Earth Sciences. Space Sciences Series of ISSI, Bd. 17, S. 419–432. Kluwer, Dordrecht (2003). ISBN:1-4020-1408-2

    Chapter  Google Scholar 

  12. Eicker, A.: Gravity field refinements by radial basis functions from in-situ satellite data. Ph.D. thesis, University of Bonn (2008)

    Google Scholar 

  13. Fecher, T., Pail, R., Gruber, T.: Global gravity field modeling based on GOCE and complementary gravity data. Int. J. Appl. Earth Obs. Geoinformation. ISSN (Online) 0303-2434 (2013). doi:10.1016/j.jag.2013.10.005

    Google Scholar 

  14. Floberghagen, R., Fehringer, M., Lamarre, D., Muzi, D., Frommknecht, B., Steiger, C., Piñeiro, J., da Costa, A.: Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J. Geod. 85(11), 749–758 (2011). doi:10.1007/s00190-011-0498-3

    Article  Google Scholar 

  15. Förste, C., Bruinsma, S.L., Flechtner, F., Marty, J.C., Lemoine, J.M., Dahle, C., Abrikosov, O., Neumayer, K.H., Biancale, R., Barthelmes, F., Balmino, G.: A preliminary update of the Direct approach GOCE Processing and a new release of EIGEN-6C. Presented at the AGU Fall Meeting 2012, San Francisco. Abstract No. G31B-0923. 3–7 Dec 2012

    Google Scholar 

  16. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere. Clarendon Press, Oxford (1998)

    Google Scholar 

  17. Goiginger, H., Pail, R.: Investigation of velocities derived from satellite positions in the framework of the energy integral approach. In: Fletcher K et al. (Hrsg.) Proceedings 3rd International GOCE User Workshop, ESA SP-627, S. 319–324, ESA, (2007). ISBN (Print) 92-9092-938-3, ISSN: 1609-042X

    Google Scholar 

  18. Goiginger, H. und R. Pail.. Covariance propagation of latitude-dependent orbit errors within the energy integral approach. In: Mertikas SP et al (Hrsg.) Gravity, Geoid and Earth Observation, IAG Symposia, 135, S. 155–161, Springer, (2010) doi: 10.1007/978-3-642-10634-7_21.

    Google Scholar 

  19. Gruber, T., Visser, P.N.A.M., Ackermann, C., Hosse, M.: Validation of GOCE gravity fieldmodels by means of orbit residuals and geoid comparisons. J. Geod. 85(11), 845–860. Springer (2011). doi:10.1007/s00190-011-0486-7

    Google Scholar 

  20. Hirt, C., Claessens, S., Fecher, T., Kuhn, M., Pail, R., Rexer, M.: New ultra-high resolution picture of Earth’s gravity field. Geophys. Res. Lett. 2013 (2013). doi:10.1002/grl.50838

    Google Scholar 

  21. Hosse, M., Pail, R., Horwath, M., Holzrichter, N., Gutknecht, B.D.: Combined regional gravity model of the Andean convergent subduction zone and its application to crustal density modelling in active plate margins. Surv. Geophys. ol. 2014, 6, 1393–1415 (2014). doi:10.1007/s10712-014-9307-x

    Article  Google Scholar 

  22. Ihde, J., Sacher, M.: EUREF Publication 11/I, Bd. 25. Mitteilungen des Bundesamtes für Kartographie und Geodäsie, Frankfurt/Main (2002)

    Google Scholar 

  23. Jekeli, C.: The determination of gravitational potential differences from satellite-to-satellite tracking. Celest. Mech. Dyn. Astron. 75, 85–101 (1999)

    Article  Google Scholar 

  24. Kern, M., Preimesberger, T., Allesch, M., Pail, R., Bouman, J., Koop, R.: Outlier detection algorithms and their performance in GOCE gravity field processing. J. Geod. 78(9), 509–519. Springer (2005). doi:10.1007/s00190-004-0419-9

    Google Scholar 

  25. Knudsen, P., Bingham, R., Andersen, O., Rio, M.-H.: A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J. Geod. 85(11), 861–879 (2011). doi:10.1007/s00190-011-0485-8

    Article  Google Scholar 

  26. Koch, K.H., Kusche, J.: Regularization of geopotential determination from satellite data by variance components. J. Geod. 76, 259–268. Springer (2002). doi:10.1007/s00190-002-0245-x

    Google Scholar 

  27. Krarup, T.: A Contribution to the Mathematical Foundation of Physical Geodesy, Bd. 44. Geodætisk Instituts Meddelelse, Copenhagen (1969)

    Google Scholar 

  28. Lemoine, F., Luthcke, S., Rowlands, D., Chinn, D., Klosko, S., Cox, C.: The use of mascons to resolve time-variable gravity from GRACE. In: Tregoning, P., et al. (Hrsg.) Dynamic Planet, S. 231–236. Springer, Berlin (2007)

    Chapter  Google Scholar 

  29. Mayer-Gürr, T.: Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation, University of Bonn (2006)

    Google Scholar 

  30. Mayer-Gürr, T., Eicker, A., Kurtenbach, E., Ilk, K.-H.: ITG-GRACE: global static and temporal gravity field models from GRACE data. In: Flechtner, F., Gruber, T., Güntner, A., Mandea, M., Rothacher, M., Schöne, T., Wickert, J. (Hrsg.) System Earth via Geodetic-Geophysical Space Techniques, S. 159–168 (2010). doi:10.1007/978-3-642-10228-8_13

    Google Scholar 

  31. Metzler, B.: Spherical cap regularization – a spatially restricted regularization method tailored to the polar gap problem. Dissertation, TU Graz (2007)

    Google Scholar 

  32. Metzler, B., Pail, R.: GOCE data processing: the spherical cap regularization approach. Stud. Geophys. Geod. 49, 441–462 (2005). doi:10.1007/s11200-005-0021-5

    Article  Google Scholar 

  33. Migliaccio, F., Reguzzoni, M., Sansò, F., Tscherning, C.C., Veicherts, M.: GOCE data analysis: the space-wise approach and the first space-wise gravity field model. In: Lacoste-Francis, H. (Hrsg.) Proceedings of the ESA Living Planet Symposium, ESA Publication SP-686, ESA/ESTEC, Noordwijk (2010)

    Google Scholar 

  34. Moritz, H.: Advanced least-squares methods. Reports of the Department of Geodetic Science, no. 175, The Ohio State University (1972)

    Google Scholar 

  35. Moritz, H.: Least-squares collocation. Rev. Geophys. Space Phys. 16(3), 421–430 (1978)

    Article  Google Scholar 

  36. Pail, R.: A parametric study on the impact of satellite attitude errors on GOCE gravity field recovery. J. Geod. 79, 231–241. Springer (2005). doi:10.1007/s00190-005-0464-z

    Google Scholar 

  37. Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E., Longuevergne, L., Panet, I., Wouters, B.: Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society. Surv. in Geophys. 36(6), 743-772 (2015). doi: 10.1007/s10712-015-9348-9

    Article  Google Scholar 

  38. Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.-D., Höck, E., Reguzzoni, M., Brockmann, J.M., Abrikosov, O., Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sansó, F., Tscherning, C.C.: First GOCE gravity field models derived by three different approaches. J. Geod. 85(11), 819–843. Springer (2011). doi:10.1007/s00190-011-0467-x

    Google Scholar 

  39. Pail, R., Fecher, T., Murböck, M., Rexer, M., Stetter, M., Gruber, T., Stummer, C.: Impact of GOCE Level 1b data reprocessing on GOCE-only and combined gravity field models. Studia Geophys. Geod. 57, 155–173 (2013). doi:10.1007/s11200-012-1149-8

    Article  Google Scholar 

  40. Pail, R., Goiginger, H., Schuh, W.-D., Höck, E., Brockmann, J.M., Fecher, T., Gruber, T., Mayer-Gürr, T., Kusche, J., Jäggi, A., Rieser, D.: Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett. 37, EID L20314. American Geophysical Union (2010b). doi:10.1029/2010GL044906

    Google Scholar 

  41. Pail, R., Plank, G.: Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J. Geod. 76, 462–474. Springer (2002). doi:10.1007/s00190-002-0277-2

    Google Scholar 

  42. Pail, R., Wermuth, M.: GOCE SGG and SST quick-look gravity field analysis. Adv. Geosci. 1, 5–9 (2003)

    Article  Google Scholar 

  43. Panet, I., Chambodut, A., Diament, M., Holschneider, M., Jamet, O.: New insights on intra-plate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP and sea-surface data. J. Geophys. Res. 111(B9), B09403 (2006). doi:10.1029/2005JB00 4141

    Google Scholar 

  44. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. 117(B04406), 38 (2012). doi:10.1029/2011JB008916

    Google Scholar 

  45. Rapp, R.H., Basic, T.: Oceanwide gravity anomalies from GEOS-3, SEASAT and GEOSAT altimeter data. J. Geophys. Res. Lett. 19(19), 1979–1982 (1992)

    Article  Google Scholar 

  46. Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.-M., Koenig, R., Loyer, S., Neumayer, H., Marty, J.C., Barthelmes, F., Perossanz, F.: A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys. Res. Lett. 29, 14 (2002). http://dx.doi.org/10.1029/2002GL015064

    Article  Google Scholar 

  47. Rudenko, S., Dettmering, D., Esselborn, S., Schoene, T., Foerste, C., Lemoine, J.-M., Ablain, M., Alexandre, D., Neumayer, K.-H.: Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Adv. Space Res. (2014). doi:10.1016/j.asr.2014.03.010

    Google Scholar 

  48. Rummel, R.: GOCE: gravitational gradiometry in a satellite. In: Freeden, W., Nashed, M.Z., Sonar, T. (Hrsg.) Handbook of Geomathematics, Bd. 2, S. 93–103. Springer (2010). doi:10.1007/978-3-642-01546-5_4

    Google Scholar 

  49. Rummel, R.: Height unification using GOCE. J. Geod. Sci. 2012, 2(Heft 4), 355–362 (2013). Versita. doi:10.2478/v10156-011-0047-2

    Google Scholar 

  50. Rummel, R., Gruber, T., Koop, R.: High level processing facility for GOCE: products and processing strategy. In: Lacoste, H. (Hrsg.) Proceedings 2nd International GOCE User Workshop „GOCE, The Geoid and Oceanography“, ESA SP-569, ESA, Noordwijk (2004)

    Google Scholar 

  51. Rummel, R., Yi, W., Stummer, C.: GOCE gravitational gradiometry. J. Geod. 85(11), 777–790. Springer (2011). doi:10.1007/s00190-011-0500-0

    Google Scholar 

  52. Sampietro, D., Reguzzoni, M., Braitenberg, C.: The GOCE estimated Moho Beneath the Tibetan Plateau and Himalaya. In: Rizos, C., Willis, P. (Hrsg.) Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, Bd. 139, S. 391–397 (2014). doi:10.1007/978-3-642-37222-3_52

    Article  Google Scholar 

  53. Schall, J., Eicker, A., Kusche, J.: The ITG-Goce02 gravity field model from GOCE orbit and gradiometer data based on the short arc approach. J. Geod. 88(4), 403–409 (2014). doi:10.1007/s00190-014-0691-2

    Article  Google Scholar 

  54. Schmidt, M., Fengler, M., Mayer-Gürr, T., Eicker, A., Kusche, J., Sanchez, L., Han, S.-C.: Regional gravity modelling in terms of spherical base functions. J. Geod. 81, 17–38 (2007). doi:10.1007/s00190-006-0101-5

    Article  Google Scholar 

  55. Schneider, M.: A general method of orbit determination. Library Translation, Band 1279, Royal Aircraft Establishment, Ministry of Technology, Farnborough (1968)

    Google Scholar 

  56. Schuh, W.-D.: Tailored numerical solution strategies for the global determination of the Earth’s gravity field. Mitteil. Geod. Inst. TU Graz, 81, 156. Graz. (1996)

    Google Scholar 

  57. Schwarz, K.P., Sideris, M.G., Forsberg, R.: The use of FFT techniques in physical geodesy. Geophys. J. Int. 100, 485–514 (1990)

    Article  Google Scholar 

  58. Siemes, C.: Digital filtering algorithms for decorrelation within large least squares problems. Dissertation, University of Bonn, Germany (2008)

    Google Scholar 

  59. Sneeuw, N.: A semi-analytical approach to gravity field analysis from satellite observations. Dissertation, DGK, Reihe C, no. 527, Bayerische Akademie Wissenschaften, Munich (2000)

    Google Scholar 

  60. Sneeuw, N., van Gelderen, M.: The polar gap. In: Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences, Bd. 65, S. 559–568. Springer, Berlin (1997). doi:10.1007/BFb0011699

    Google Scholar 

  61. Stetter, M.: Stochastische Modellierung von GOCE-Gradiometerbeobachtungen mittels digitaler Filter. Master Thesis, no. D240, TU München (2012)

    Google Scholar 

  62. Stummer, C., Fecher, T., Pail, R.: Alternative method for angular rate determination within the GOCE gradiometer processing. J. Geod. 85(11), 585–596. Springer (2011). doi:10.1007/s00190-011-0461-3

    Google Scholar 

  63. Stummer, C., Siemes, C., Pail, R., Frommknecht, B., Floberghagen, R.: Upgrade of the GOCE level 1b gradiometer processor. Adv. Space. Res. 49(4), 739–752 (2012). doi:10.1016/j.asr.2011.11.027

    Article  Google Scholar 

  64. Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C.: The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31(9), L09607, AmericanGeophysical Union (2004). http://dx.doi.org/10.1029/2004GL019920

  65. van der Meijde, M., Julià, J., Assumpção, M.: Gravity derived Moho for South America. Tectonophysics 609, 456–467 (2013). doi:10.1016/j.tecto.2013.03.023

    Article  Google Scholar 

  66. Vanícek, P., Wells, D., Derenyi, E., Kleusberg, A., Yazdani, R., Arsenault, T., Christou, N., Mantha, J., Pagiatakis, S.: Satellite altimetry applications for marine gravity. Technical report No.128, Dept. of Surveying Engineering, University of New Brunswick, Fredericton (1987)

    Google Scholar 

  67. Yi, W., Rummel, R., Gruber, T.: Gravity field contribution analysis of GOCE gravitational gradient components. Studia Geophysica et Geodaetica 57(2), 174–202 (2013). ISSN (Online) 1573–1626. doi:10.1007/s11200-011-1178-8

    Google Scholar 

  68. Yoder, C.F., Williams, J.G., Dickey, J.O., Schutz, B.E., Eanes, R.J., Tapley, B.D.: Secular variation of Earth’s gravitational harmonic J2 coefficient from Lageos and non-tidal acceleration of Earth rotation. Nature 303, 757–762 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Pail, R. (2017). Globale Schwerefeldmodellierung am Beispiel von GOCE. In: Rummel, R. (eds) Erdmessung und Satellitengeodäsie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47100-5_8

Download citation

Publish with us

Policies and ethics