Skip to main content

Plattformen und Sensoren für die Fernerkundung und deren Geopositionierung

  • Chapter
  • First Online:

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

Zusammenfassung

In diesem Beitrag werden aktuelle Entwicklungen im Bereich der Plattformen und Sensorik, die heutzutage in der Fernerkundung eingesetzt werden, diskutiert. Das Leistungsvermögen der Plattformen und Sensoren hat sich zunehmend verbessert, wodurch sich neue Beobachtungsmöglichkeiten ergeben. Im folgenden Text werden die aktuellsten Entwicklungen von Plattformen, die für die Fernerkundung relevant sind, beschrieben, wobei der Schwerpunkt auf den Satellitenkonstellationen und den neu entwickelten UAS-Plattformen liegt. Ergänzend werden die Sensoren nach ihren räumlichen, spektralen und zeitlichen Eigenschaften und auch hinsichtlich ihrer Eignung für den Plattformeinsatz eingeteilt. Des Weiteren werden die gegenwärtigen Entwicklungen bei der direkten und indirekten Geopositionierung beschrieben. Darüber hinaus werden aktuelle Trends, wie zum Beispiel das Potential von Crowd-Sensing, die zunehmende Verschmelzung von bildgebender mit Navigations- und Vermessungssensorik, als auch die Entwicklung bei Plattform- und Sensorkombinationen, aufgezeigt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Aber, J.S., Marzolff, I., Ries, J.: Small-Format Aerial Photography: Principles, Techniques and Geoscience Applications, S. 72–73. Elsevier, Amsterdam/London (2010)

    Google Scholar 

  2. Allouis, T., Bailly, J.S., Pastol, Y., Le Roux, C.: Comparison of LiDAR waveform processing methods for very shallow water bathymetry using Raman, near infrared and green signals. Earth Surf. Process. Landf. 35(6), 640–650 (2010)

    Google Scholar 

  3. Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., Bruce, L.M.: Comparison of pansharpening algorithms: outcome of the 2006 GRS-S data-fusion contest. IEEE Trans. Geosci. Remote Sens. 45(10), 3012–3021 (2007)

    Article  Google Scholar 

  4. Asner, G.P., Knapp, D.E., Boardman, J., Green, R.O., Kennedy-Bowdoin, T., Eastwood, M., Martin, R., Anderson, Ch., Field, C.B.: Carnegie airborne observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens. Environ. 124, 454–465 (2012)

    Article  Google Scholar 

  5. ASPRS: ASPRS ten-year remote sensing industry forecast (2011). http://www.asprs.org/10-Year-Industry-Forecast/Ten-Year-Industry-Forecast.html

    Google Scholar 

  6. Brock, J.C., Purkis, S.J.: The emerging role of LiDAR remote sensing in coastal research and resource management. J. Coastal Res. 53, 1–5 (2009)

    Article  Google Scholar 

  7. Campbell, J.B.: Introduction to Remote Sensing, S. 6. CRC Press, The Guilford Press (2002)

    Google Scholar 

  8. Chen, Y., Räikkönen, E., Kaasalainen, S., Suomalainen, J., Hakala, T., Hyyppä, J., Chen, R.: Two-channel hyperspectral LiDAR with a supercontinuum laser source. Sensors 10(7), 7057–7066 (2010)

    Article  Google Scholar 

  9. Chen, X., Li, Y., Su, Y., Han, L., Liao, J., Yang, S.: Mapping global surface roughness using AMSR-E passive microwave remote sensing. Geoderma 235–236(2014), 308–315 (2014)

    Article  Google Scholar 

  10. Hakala, T., Suomalainen, J., Kaasalainen, S., Chen, Y.: Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt. Express 20(7), 7119–7127 (2012)

    Article  Google Scholar 

  11. Colomb, F.R., Alonso, C., Hofmann, C., Nollmann, I.: SAC-C mission, an example of international cooperation. Adv. Space Res. 34(10), 2194–2199 (2004)

    Article  Google Scholar 

  12. Colomina, I., Molina, P.: Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 92, 79–97 (2014)

    Article  Google Scholar 

  13. Cramer, M.: The EuroSDR network on digital camera calibration, Report Phase 1, 53S (2004). http://www.ifp.uni-stuttgart.de/eurosdr/EuroDAC/index.en.html

    Google Scholar 

  14. d’Angelo, P., Kuschk, G., Reinartz, P.: Evaluation of skybox video and still image products. ISPRS-International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. XL-1, 95–99 (2014)

    Article  Google Scholar 

  15. Dunn, C., Bertiger, W., Bar-Sever, Y., Desai, S., Haines, B., Kuang, D., Kim, J.: APPLICATION CHALLENGE-instrument of grace-GPS augments gravity measurements-twin satellites trail each other in Earth orbit. As they pass over contours in the gravity field, they first. GPS World 14(2), 16–29 (2003)

    Google Scholar 

  16. Eisenberg, A.: Microsatellites: what big eyes they have. The New York Times (2013). http://nyti.ms/1828qP7. Zugegriffen am 03.06.2015

  17. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011)

    Article  Google Scholar 

  18. Gartner, G., Huang, H.: Progress in Location-Based Services 2014. Lecture Notes in Geoinformation and Cartography, 282S. Springer, Cham (2015)

    Google Scholar 

  19. Gelbart, A., Redman, B.C., Light, R.S., Schwartzlow, C.A., Griffis, A.J.: Flash LiDAR based on multiple-slit streak tube imaging LiDAR. Proc. SPIE 4723, 9–18 (2002)

    Article  Google Scholar 

  20. Gernhardt, S., Bamler, R.: Deformation monitoring of single buildings using meter-resolution SAR data in PSI. ISPRS J. Photogramm. Remote Sens. 73, 68–79 (2012)

    Article  Google Scholar 

  21. GPS.gov: New civil signals. Official U.S. Government information about the Global Positioning System (GPS) and related topics (2015). http://www.gps.gov/systems/gps/modernization/civilsignals/. Zugegriffen am 04.06.2015

  22. Grejner-Brzezinska, D.: Mobile mapping technology: ten years later, part I and II. Surv. Land Inf. Syst. 61(2 and 3), 79–94, 83–100 (2001)

    Google Scholar 

  23. Grejner-Brzezinska, D., Toth, Ch., Jozkow, G.: On Sensor Georeferencing and Point Cloud Generation with sUAS. In: Proceedings of The Institute of Navigation, PACIFIC PNT 2015, S. 839–848 (2015)

    Google Scholar 

  24. Gruber, M., Walcher, W.: Calibrating the new ultracam osprey oblique aerial sensor. ISPRS-Int. Archiv. Photogramm. Remote Sens. Spat. Inf. Sci. 1(1), 47–52 (2014)

    Article  Google Scholar 

  25. Grün, A.: Scientific-technological development in photogrammetry and remote sensing between 2004 and 2008. In: Li, Z., Chen, J., Baltavias, M. (Hrsg.) Advances in Photogrammmetry, Remote Sensing and Spatial Information Sciences- 2008 ISPRS congress book, S. 21–25. Taylor and Francis (2008)

    Google Scholar 

  26. Gwenzi, D., Lefsky, M.A.: Prospects of photon counting LiDAR for savanna ecosystem structural studies. ISPRS-Int. Archiv. Photogramm. Remote Sens. Spat. Inf. Sci. 1, 141–147 (2014)

    Article  Google Scholar 

  27. Harsanyi, J.C., Chang, C.I.: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 32(4), 779–785 (1994)

    Article  Google Scholar 

  28. Heipke, C.: Crowdsourcing geospatial data. ISPRS J. Photogramm. Remote Sens. 65(6), 550–557 (2010)

    Article  Google Scholar 

  29. Honkavaara, E., Arbiol, R., Markelin, L., Martinez, L., Cramer, M., Bovet, S., Chandelier, L., Ilves, R., Klonus, S., Marshal, P., Schläpfer, D., Tabor, M., Veje, N.: Digital airborne photogrammetry – a new tool for quantitative remote sensing? – A state-of-the-art review on radiometric aspects of digital photogrammetric images. Remote Sens. 1(3), 577–605 (2009)

    Article  Google Scholar 

  30. Honkavaara, E., Hakala, T., Markelin, L., Jaakkola, A., Saari, H., Ojanen, H., Pölönen, I., Tuominen, S., Näsi, R., Rosnell, T., Viljanen, N.: Autonomous hyperspectral UAS photogrammetry for environmental monitoring applications. ISPRS-Int. Archiv. Photogramm. Remote Sens. Spat. Inf. Sci. XL-1, 155–159 (2014)

    Article  Google Scholar 

  31. Howe, J.: The rise of crowdsourcing. Wired Mag. 14(6), 1–4 (2006)

    Google Scholar 

  32. Hudson-Smith, A., Batty, M., Crooks, A., Milton, R.: Mapping for the masses accessing Web 2.0 through crowdsourcing. Soc. Sci. Comput. Rev. 27(4), 524–538 (2009)

    Google Scholar 

  33. Hyyppä J., et al.: Unconventional LiDAR mapping from air. In: Fritsch, D. (Hrsg.) Terrestrial and Mobile, Photogrammetric Week 2013, S. 205–214. Wichmann (2013)

    Google Scholar 

  34. IBM: What is big data? (2012). http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html. Zugegriffen am 03.06.2015

  35. Jordan, R.L., Caro, E.R., Kim, Y., Kobrick, M., Shen, Y., Stuhr, F.V., Werner, M.U.: Shuttle radar topography mapper (SRTM). In: Satellite Remote Sensing III, S. 412–422. International Society for Optics and Photonics (1996)

    Google Scholar 

  36. Jutzi, B.: Methoden zur automatischen Szenencharakterisierung basierend auf aktiven optischen Sensoren für die Photogrammetrie und Fernerkundung. Habilitation, KIT (2015). doi:10.5445/IR/1000050691

    Google Scholar 

  37. Kasevich M.: Cold atom interferometry navigation sensors. Stanford’s PNT challenges and opportunities symposium (2007). http://scpnt.stanford.edu/downloads/14.%20Kasevich_PNT-Symposium.pdf. Zugegriffen am 16.09.2015

  38. Koukal, T., und Schneider, W.: Proceedings of the EARSeL Workshop on 3D Remote Sensing in Forestry, S. 14–15. University of Natural Resources and Applied Life Sciences (BOKU), Austria, Vienna (2006)

    Google Scholar 

  39. Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., Zink, M.: TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 45(11), 3317–3341 (2007)

    Article  Google Scholar 

  40. Lee, S.R.: Overview of KOMPSAT-5 program, mission, and system. In: 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, S. 797–800. IEEE (2010)

    Google Scholar 

  41. Li, R.: Mobile mapping: an emerging technology for spatial data acquisition. Photogramm. Eng. Remote Sens. 63(9), 1085–1092 (1997)

    Google Scholar 

  42. Li, R.: Potential of high-resolution satellite imagery for national mapping products. Photogramm. Eng. Remote Sens. 64, 1165–1170 (1998)

    Google Scholar 

  43. Lenzano, M.G., Lannutti, E., Toth, C., Lenzano, L., Lo Vecchio, A.: Assessment of ice-dam collapse by time-lapse photos at the Perito Moreno Glacier, Argentina. Int. Archiv. Photogramm. Remote Sens. Spat. Inf. Sci. XL-1, 11–217 (2014). doi:10.5194/isprsarchives-XL-1-211-2014

    Google Scholar 

  44. Lillisand, T., Kiefer, R., Chipman, J.: Remote Sensing and Image Interpretation, 7. Aufl. Wiley (2015)

    Google Scholar 

  45. Lin, Y., Hyyppa, J., Jaakkola, A.: Mini-UAV-borne LiDAR for fine-scale mapping. Geosci. IEEE Remote Sens. Lett. 8(3), 426–430 (2011)

    Article  Google Scholar 

  46. Lulla, K., Nellis, M.D., Rundquist, B.: Celebrating 40 years of Landsat program’s Earth observation accomplishments. Geocarto Int. 27(6), 459–459 (2012)

    Article  Google Scholar 

  47. Mallet, C., Bretar, F.: Full-waveform topographic LiDAR: state-of-the-art. ISPRS J. Photogramm. Remote Sens. 64(1), 1–16 (2009)

    Article  Google Scholar 

  48. Marcucci, E., Saiet, E., Hatfield, M.C.: A new hyperspectral designed for small UAS tested in real world applications. In: AGU Fall Meeting, 15–19 Dec 2014, San Francisco (2014)

    Google Scholar 

  49. Maruyama, T., Narusawa, F., Kudo, M., Tanaka, M., Saito, Y., Nomura, A.: Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode. Opt. Eng. 40(1), 233–239 (2014)

    Google Scholar 

  50. Massaro, R.D., Anderson, J.E., Nelson, J.D., Edwards, J.D.: A comparative study between frequency-modulated continuous wave ladar and linear mode LiDAR. Int. Archiv. Photogramm. Remote Sensing and Spatial Information Sciences, Volume XL-1, 233–239 (2014)

    Article  Google Scholar 

  51. McLaughlin, R.A.: Extracting transmission lines from airborne LiDAR data. IEEE Geosci. Remote Sens. Lett. 3(2), 222–226 (2006)

    Article  Google Scholar 

  52. Murthy, K., Shearn, M., Smiley, B.D., Chau, A.H., Levine, J., Robinson, D.: SkySat-1: very high-resolution imagery from a small satellite. In: SPIE Remote Sensing, S. 92411E–92411E. International Society for Optics and Photonics (2014)

    Google Scholar 

  53. Nagai, M., Chen, T., Shibasaki, R., Kumagai, H., Ahmed, A.: UAV-borne 3-D mapping system by multisensor integration. IEEE Trans. Geosci. Remote Sens. 47(3), 701–708 (2009)

    Article  Google Scholar 

  54. NASA: Ten-engine electric plane prototype takes off (2015). http://www.nasa.gov/image-feature/ten-engine-electric-plane-prototype-takes-off. Zugegriffen am 04.06.2015

  55. Najafabadi, M., Villanustre, F., Khoshgoftaar, T., Seliya, N., Wald, N., Muharemagic, E.: Deep learning applications and challenges in big data analytics. J. Big Data 2, 1 (2015). doi:10.1186/s40537-014-0007-7

    Article  Google Scholar 

  56. Nex, F., Rupnik, E., Remondino, F.: Building footprints extraction from oblique imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2, 61–66 (2013)

    Article  Google Scholar 

  57. Ostrowski, S., Jóźków, G., Toth, C., Vander Jagt, B.: Analysis of point cloud generation from UAS images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 1, 45–51 (2014)

    Article  Google Scholar 

  58. Pages, G., Nguyen, A.-D., Priot, B., Pérennou, T., Calmettes, V.: Tightly coupled INS/DGPS system for collaborative navigation in mobile ad hoc networks. In: Proceedings of The Institute of Navigation (ION GNSS+ 2015), Tampa, Florida, USA (2015)

    Google Scholar 

  59. Pajeres, G.: Overview and current status of remote sensing applications based on unmanned aerial vehicles. Photogramm. Eng. Remote Sens. 81(4), 281–329 (2015)

    Article  Google Scholar 

  60. Paparoditis, N., Papelard, J.-P., Cannelle, B., Devaux, A., Soheilian, B., David, N., Houzay, E.: Stereopolis II: a multi-purpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology. Revue Française de Photogrammétrie et de Télédétection 200, 69–79 (2012)

    Google Scholar 

  61. Petrie, G.: Airborne digital frame cameras. GeoInformatics 7(6), 18–27 (2003)

    Google Scholar 

  62. Petrie, G.: Systematic oblique aerial photography using multiple digital cameras. Photogramm. Eng. Remote Sens. 75(2), 102–107 (2009)

    Google Scholar 

  63. Petrie, G.: Airborne topographic laser scanners. GEO Inf. 14, 34–44 (2011)

    Google Scholar 

  64. Randeniya, D.I., Sarkar, S., Gunaratne, M.: Vision-IMU integration using a slow-frame-rate monocular vision system in an actual roadway setting. IEEE Trans. Intell. Transport. Syst. 11(2), 256–266 (2010)

    Article  Google Scholar 

  65. Remondino, F.: Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens. 3(2011), 1104–1138 (2011)

    Article  Google Scholar 

  66. Rosen, P., Eineder, M., Rabus, B., Gurrola, E., Hensley, S., Knoepfle, W., Breit, H., Roth, A., Werner, M.: SRTM-mission-cross comparison of X and C band data properties. In: IEEE 2001 International Geoscience and Remote Sensing Symposium (IGARSS’01), Bd. 2, S. 751–753. IEEE (2001)

    Google Scholar 

  67. Rosette, J.A.B., North, P.R.J., Suarez, J.C., Los, S.O.: Uncertainty within satellite LiDAR estimations of vegetation and topography. Int. J. Remote Sens. 31(5), 1325–1342 (2010)

    Article  Google Scholar 

  68. Sandau, R., Röser, H.-P., Valenzuela, A. (Hrsg.): Small Satellite Missions for Earth Observation – New Developments and Trends. Springer (2011)

    Google Scholar 

  69. Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing, 3. Aufl., S. 2. Academic (2007). ISBN 978-0-12-369407-2

    Google Scholar 

  70. Singh, B.: ISRO to launch Google’s satellite for GPS maps (2015). iamwire http://www.iamwire.com/2015/02/isro-launch-google-satellite-gps-maps/109633. Zugegriffen am 04.09.2015

  71. SkyBox Imaging: Blog: SkySat-1 captures first high-resolution, HD video of Earth from space (2013). http://www.skybox.com/blog/skysat-1-captures-first-hd-video-of-earth-from-space. Zugegriffen am 03.06.2015

  72. SkyBox Imaging: Blog: launch + 48 hours: SkySat-2 first light (2014). http://www.skyboximaging.com/blog/skysat-2-first-light. Zugegriffen am 04.09.2015

  73. Starek, M., Jung, J.: The State of LiDAR for UAS Applications. LiDAR’s Next Geospatial Frontier. 2015 UAS Special of GIM International, S. 25–27 (2015)

    Google Scholar 

  74. Stephens, G.L., Vane, D.G., Boain, R.J., Mace, G.G., Sassen, K., Wang, Z., Illingworth, A.J., O’Connor, E.J., Rossow, W.B., Durden, S.L., Miller, S.D., Austin, R.T., Benedetti, A., Mitrescu, C., CloudSat Science Team: The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 83(12), 1771–1790 (2002)

    Article  Google Scholar 

  75. Stettner, R.: Compact 3D flash LiDAR video cameras and applications. In: SPIE Defense, Security, and Sensing, S. 768405–768405. International Society for Optics and Photonics (2010)

    Google Scholar 

  76. Stilla, U., Jutzi, B.: Waveform analysis for small-footprint pulsed laser systems. In: Shan, J., Toth, C.K. (Hrsg.) Topographic Laser Ranging and Scanning: Principles and Processing, S. 215–234. CRC Press, Boca Raton (2008)

    Chapter  Google Scholar 

  77. Tan, K.H., Hua, H., Ahuja, N.: Multiview panoramic cameras using mirror pyramids. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 941–946 (2004)

    Article  Google Scholar 

  78. Thrun, S., Leonard, J.J.: Simultaneous localization and mapping. In: Siciliano, B., Khatib, O. (Hrsg.) Springer Handbook of Robotics, S. 871–889. Springer, Berlin/Heidelberg (2008)

    Chapter  Google Scholar 

  79. Toth, C., Grejner-Brzezinska, D.A.: Performance analysis of the airborne integrated mapping system (AIMSTM). In: ISPRS Commission II Symposium on Data Integration: Systems and Techniques, International Archives of Photogrammetry and Remote Sensing, Bd. XXXII, part 2, Cambridge, S. 320–326 (1998)

    Google Scholar 

  80. Toth, C.K.: Sensor integration in airborne mapping. IEEE Trans. Instrum. Measur. 51(6), 1367–1373 (2002)

    Article  Google Scholar 

  81. Toth, C.: Digital Cameras in Manual of Photogrammetry, 6. Aufl. Section 8.3.1. Published by American Society of Photogrammetry and Remote Sensing (2013)

    Google Scholar 

  82. Toutin, T., Gray, L.: State-of-the-art of elevation extraction from satellite SAR data. ISPRS J. Photogramm. Remote Sens. 55(1), 13–33 (2000)

    Article  Google Scholar 

  83. Tyc, G., Tulip, J., Schulten, D., Krischke, M., Oxfort, M.: The RapidEye mission design. Acta Astron. 56(1), 213–219 (2005)

    Article  Google Scholar 

  84. Valkenburg, R.J., McIvor, A.M.: Accurate 3D measurement using a structured light system. Image Vis. Comput. 16(2), 99–110 (1998)

    Article  Google Scholar 

  85. Wang, C.K., Philpot, W.D.: Using airborne bathymetric LiDAR to detect bottom type variation in shallow waters. Remote Sens. Environ. 106(1), 123–135 (2007)

    Article  Google Scholar 

  86. Wallace, L., Lucieer, A., Watson, C., Turner, D.: Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 4(6), 1519–1543 (2012)

    Article  Google Scholar 

  87. Watts, A.C., Ambrosia, V.G., Hinkley, E.A.: Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sens. 4(6), 1671–1692 (2012)

    Article  Google Scholar 

  88. Wei, G., Shalei, S., Bo, Z., Shuo, S., Faquan, L., Xuewu, C.: Multi-wavelength canopy LiDAR for remote sensing of vegetation: design and system performance. ISPRS J. Photogramm. Remote Sens. 69, 1–9 (2012); Bo, Z., Wei, G., Shuo, S., Shalei, S.: A multi-wavelength canopy LiDAR for vegetation monitoring: system implementation and laboratory-based tests. Proc. Environ. Sci. 10, 2775–2782 (2011)

    Google Scholar 

  89. Werner, M.: Shuttle radar topography mission (SRTM) mission overview. Frequenz 55(3–4), 75–79 (2001)

    Google Scholar 

  90. White, C.: Google streetview cars rocking Ladybug2 spherical camera (2007). http://gizmodo.com/283769/google-streetview-cars-rocking-ladybug2-spherical-camera. Zugegriffen am 11.09.2015

  91. Winker, D.M., Pelon, J.R., McCormick, M.P.: The CALIPSO mission: spaceborne LiDAR for observation of aerosols and clouds. In: Third International Asia-Pacific Environmental Remote Sensing of the Atmosphere, Ocean, Environment, and Space, S. 1–11. International Society for Optics and Photonics (2003)

    Google Scholar 

  92. Wu, A.D., Johnson, E.N., Proctor, A.A.: Vision-aided inertial navigation for flight control. J. Aerospace Comput. Inf. Commun. 2(9), 348–360 (2005)

    Article  Google Scholar 

  93. www2.isprs.org/commissions/comm1/icwg15b/resources.html. Zugegriffen im Juli 2015

  94. Yang, B., Chen, C.: Automatic registration of UAV-borne sequent images and LiDAR data. ISPRS J. Photogramm. Remote Sens. 101, 262–274 (2015)

    Article  Google Scholar 

  95. Zink M., Bachmann M, Bräutigam B., Fritz T., Hajnsek I., Krieger G., Moreira A., Wessel B.: TanDEM-X: the new global DEM takes shape. IEEE Geosci. Remote Sens. Mag. 2(2), 8–23 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Toth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Toth, C., Jutzi, B. (2017). Plattformen und Sensoren für die Fernerkundung und deren Geopositionierung. In: Heipke, C. (eds) Photogrammetrie und Fernerkundung. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47094-7_38

Download citation

Publish with us

Policies and ethics