Skip to main content

Perceptual Visualization Enhancement of Infrared Images Using Fuzzy Sets

  • Chapter
  • First Online:
Transactions on Computational Science XXV

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 9030))

Abstract

Enhancement of infrared (IR) images is a perplexing task. Infrared imaging finds its applications in military and defense related problems. Since IR devices capture only the heat emitting objects, the visualization of the IR images is very poor. To improve the quality of the given IR image for better perception, suitable enhancement routines are required such that contrast can be improved that suits well for human visual system. To accomplish the task, a fuzzy set based enhancement of IR images is proposed in this paper. The proposed method is adaptive in nature since the required parameters are calculated based on the image characteristics. Experiments are carried out on standard benchmark database and the results show the efficacy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajkumar, S., Chandra Mouli, P.V.S.S.R.: Target detection in infrared images using block-based approach. In: Informatics and Communication Technologies for Societal Development, pp. 9–16 (2015)

    Google Scholar 

  2. Lin, C.-L.: An approach to adaptive infrared image enhancement for long-range surveillance. Infrared Phys. Technol. 54(2), 84–91 (2011)

    Article  Google Scholar 

  3. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall Inc., Upper Saddle River (1989)

    MATH  Google Scholar 

  4. Yu, Z., Bajaj, C.: A fast and adaptive method for image contrast enhancement. In: International Conference on Image Processing (ICIP 2004), vol. 2, pp. 1001–1004 (2004)

    Google Scholar 

  5. Lai, R., Yang, Y., Wang, B., Zhou, H.: A quantitative measure based infrared image enhancement algorithm using plateau histogram. Opt. Commun. 283(21), 4283–4288 (2010)

    Article  Google Scholar 

  6. Gonzalez, R.C., Woods, R.E.: Digital image processing (2002)

    Google Scholar 

  7. Wang, B., et al.: A real-time contrast enhancement algorithm for infrared images based on plateau histogram. Infrared Phys. Technol. 48(1), 77–82 (2006)

    Article  Google Scholar 

  8. Song, Y., Shao, X., Xu, J.: New enhancement algorithm for infrared image based on double plateaus histogram. Infrared Laser Eng. 2, 029 (2008)

    Google Scholar 

  9. Liang, K., Ma, Y., Xie, Y., Zhou, B., Wang, R.: A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization. Infrared Phys. Technol. 55(4), 309–315 (2012)

    Article  Google Scholar 

  10. Deshpande, S.D., et al.: Max-mean and max-median filters for detection of small targets. In: SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, pp. 74–83 (1999)

    Google Scholar 

  11. Highnam, R., Brady, M.: Model-based image enhancement of far infra-red images. In: Proceedings of the Workshop on Physics-Based Modeling in Computer Vision, p. 40 (1995)

    Google Scholar 

  12. Tang, M., Ma, S., Xiao, J.: Model-based adaptive enhancement of far infrared image sequences. Pattern Recogn. Lett. 21(9), 827–835 (2000)

    Article  Google Scholar 

  13. Cao, Y., Liu, R., Yan, J.: Small target detection using two-dimensional least mean square (TDLMS) filter based on neighborhood analysis. Int. J. Infrared Millimeter Waves 29(2), 188–200 (2008)

    Article  Google Scholar 

  14. Peregrina-Barreto, H., Herrera-Navarro, A.M., Morales-Hernández, L.A., Terol-Villalobos, I.R.: Morphological rational operator for contrast enhancement. J. Opt. Soc. Am. 28(3), 455–464 (2011)

    Article  Google Scholar 

  15. Bai, X., Fugen, Z.: Hit-or-miss transform based infrared dim small target enhancement. Opt. Laser Technol. 43(7), 1084–1090 (2011)

    Article  Google Scholar 

  16. Shao, X., Fan, H., Lu, G., Xu, J.: An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system. Infrared Phys. Technol. 55(5), 403–408 (2012)

    Article  Google Scholar 

  17. Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley, New York (2009)

    Google Scholar 

  18. Pal, S.K., King, R.: Image enhancement using smoothing with fuzzy sets. IEEE Trans. Syst. Man Cybern. 11(7), 494–500 (1981)

    Article  Google Scholar 

  19. Hanmandlu, M., Tandon, S.N., Mir, A.H.: A new fuzzy logic based image enhancement. Biomed. Sci. Instrum. 33, 590–595 (1996)

    Google Scholar 

  20. Hassanien, A.E., Badr, A.: A comparative study on digital mamography enhancement algorithms based on fuzzy theory. Stud. Inform. Control 12(1), 21–32 (2003)

    Google Scholar 

  21. Rangasamy, P., Kuppannan, J., Atanassov, K.T., Gluhchev, G.: Role of fuzzy and intuitionistic fuzzy contrast intensification operators in enhancing images. Notes Intuitionistic Fuzzy Sets 14(2), 59–66 (2008)

    Google Scholar 

  22. Ghodke, V.N., Ganorkar, S.R.: Image enhancement using spatial domain techniques and fuzzy intensification factor. Int. J. Emerg. Technol. Adv. Eng. 3(10), 430–435 (2013)

    Google Scholar 

  23. Mitchell, T.M.: Machine Learning, vol. 45. McGraw Hill, Burr Ridge (1997)

    MATH  Google Scholar 

  24. Sayood, K.: Introduction to data compression. Newnes (2012)

    Google Scholar 

  25. Wang, Z., Bovik, A.C.: A universal image quality index. Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  27. Lewis, J.P.: Fast normalized cross-correlation. Vis. Interface 10(1), 120–123 (1995)

    Google Scholar 

  28. OTCBVS Benchmark Dataset Collection. http://www.vcipl.okstate.edu/otcbvs/bench/

Download references

Acknowledgments

This work is supported by the Defense Research and Development Organization (DRDO), New Delhi India for funding the project under the Directorate of Extramural Research & Intellectual Property Rights (ER & IPR) No. ERIP/ER/1103978/M/01/1347 dated July 28, 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Mouli P.V.S.S.R. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soundrapandiyan, R., P.V.S.S.R., C.M. (2015). Perceptual Visualization Enhancement of Infrared Images Using Fuzzy Sets. In: Gavrilova, M., Tan, C., Saeed, K., Chaki, N., Shaikh, S. (eds) Transactions on Computational Science XXV. Lecture Notes in Computer Science(), vol 9030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47074-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47074-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47073-2

  • Online ISBN: 978-3-662-47074-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics