Skip to main content

The Worst-Case DFT Filter Bank Design with Subchannel Variations

  • Chapter
Optimization Methods, Theory and Applications
  • 1530 Accesses

Abstract

In this paper, we consider an optimal design of a DFT filter bank subject to subchannel variation constraints. The design problem is formulated as a minimax optimization problem. By exploiting the properties of this minimax optimization problem, we show that it is equivalent to a semi-infinite optimization problem in which the continuous inequality constraints are only with respect to frequency. Then, a computational scheme is developed to solve such a semi-infinite optimization problem. Simulation results show that, for a fixed distortion level, the aliasing level between different subbands is significantly reduced, in some cases up to 28 dB, when compared with that obtained by the bi-iterative optimization method without consideration of the subchannel variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Dam HH, Nordholm S, Cantoni A (2005) Uniform FIR filterbank optimization with group delay specification. IEEE Trans Signal Process 53(11):4249–4260

    Article  MathSciNet  Google Scholar 

  • de Haan JM, Grbic N, Claesson I, Nordholm S (2001) Design of oversampled uniform DFT filter banks with delay specification using quadratic optimization. In: Proceedings of ICASSP’2001, Salt Lake City, pp 3633–3636

    Google Scholar 

  • de Haan JM, Grbic N, Claesson I, Nordholm S (2003) Filter bank design for subband adaptive microphone arrays. IEEE Trans Speech Audio Process 11(1):14–23

    Article  Google Scholar 

  • Harteneck M, Weiss S, Stewart RW (1999) Design of near perfect reconstruction oversampled filter banks for subband adaptive filters. IEEE Trans Circuits Syst 46:1081–1085

    Article  Google Scholar 

  • Kellermann W (1988) Analysis and design of multirate systems for cancellation of acoustic echoes. In: Proceedings of ICASSP’88, New York, pp 2570–2573

    Google Scholar 

  • Kha HH, Tuan HD, Nguyen TQ (2009) Efficient design of cosine-modulated filter banks via convex optimization. IEEE Trans Signal Process 57(3):966–976

    Article  MathSciNet  Google Scholar 

  • Lopez M, Still G (2007) Semi-infinite programming. Eur J Oper Res 180:491–518

    Article  MATH  MathSciNet  Google Scholar 

  • Mansour MF (2007) On the optimization of oversampled DFT filter banks. IEEE Signal Process Lett 14(6):389–392

    Article  Google Scholar 

  • Nguyen TQ (1994) Near-perfect-reconstruction pseudo-QMF banks. IEEE Trans Signal Process 42(1):65–75

    Article  Google Scholar 

  • Sturm JF (1999) Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653

    Article  MathSciNet  Google Scholar 

  • Teo KL, Goh CJ (1988) On constrained optimization problems with nonsmooth cost functionals. Appl Math Optim 18:181–190

    Article  MATH  MathSciNet  Google Scholar 

  • Vaidyanathan PP (1993) Multirate systems and filter banks. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Wilbur MR, Davidson TN, Reilly JP (2004) Efficient design of oversampled NPR GDFT filterbanks. IEEE Trans Signal Process 52(7):1947–1963

    Article  MathSciNet  Google Scholar 

  • Wu CZ, Teo KL (2010) A dual parametrization approach to Nyquist filter design. Signal Process 90:3128–3133

    Article  MATH  Google Scholar 

  • Wu CZ, Teo KL (2011) Design of discrete Fourier transform modulated filter bank with sharp transition band. IET Signal Process 5:433–440

    Article  Google Scholar 

  • Wu CZ, Teo KL, Rehbock V, Dam HH (2008) Global optimum design of uniform FIR filter bank with magnitude constraints. IEEE Trans Signal Process 56(11):5478–5486

    Article  MathSciNet  Google Scholar 

  • Wu CZ, Gao D, Teo KL (2013) A direct optimization method for low group delay FIR filter design. Signal Process 93:1764–1772

    Article  Google Scholar 

  • Yiu KFC, Grbic N, Nordholm S, Teo KL (2004) Multicriteria design of oversampled uniform DFT filter banks. IEEE Signal Process Lett 11(6):541–544

    Article  Google Scholar 

  • Zhang ZJ, Shui PL, Su T (2008) Efficient design of high-complexity cosine modulated filter banks using 2Mth band conditions. IEEE Trans Signal Process 56(11):5414–5426

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Changzhi Wu was partially supported by Australian Research Council Linkage Program, Natural Science Foundation of China (61473326), Natural Science Foundation of Chongqing (cstc2013jcyjA00029 and cstc2013jjB0149).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix 1

$$\displaystyle{ \gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta }) = \frac{1} {D}\sum \limits _{m=0}^{M-1}\sum \limits _{ n=0}^{M-1}\left (1 +\delta _{ m}\right )\left (1 +\delta _{n}\right )\sum \limits _{d=1}^{D-1}\sum \limits _{ l=1}^{D-1}\boldsymbol{h}^{T}\varPhi _{ m,n,d,l}\left (\boldsymbol{g}\right )\boldsymbol{h,} }$$
(10.41)

where \(\varPhi _{m,n,d,l}\left (\boldsymbol{g}\right )\) is a \(L_{a} \times L_{a}\) matrix. The \(\left (i,j\right )\)-th element of \(\varPhi _{m,n,d,l}\left (\boldsymbol{g}\right )\) is given by

$$\displaystyle\begin{array}{rcl} & & \left [\varPhi _{m,n,d,l}\left (\boldsymbol{g}\right )\right ]_{i,j} =\sum \limits _{ t=0}^{L_{s}-1}\sum \limits _{ s=0}^{L_{s}-1}\cos \left [\left (m - n\right )\left (i + t - 2\right ) \frac{2\pi } {M}\right. {}\\ & & \left.+\left (d\left (i - 1\right ) - l\left (j - 1\right )\right ) \frac{2\pi } {D}\right ]\delta \left (i + t - j - s\right )g\left (t\right )g\left (s\right ), {}\\ \end{array}$$

where \(\delta \left (\cdot \right )\) is the delta function, i.e.,

$$\displaystyle{ \delta \left (t\right ) = \left \{\begin{array}{c} 1,\text{ if}\ t = 0,\\ 0, \text{ if} \ t\neq 0. \end{array} \right. }$$

Appendix 2

Proof.

Clearly, \(\mathcal{U}\) is a convex set and \(\boldsymbol{\bar{\delta }}_{1},\cdots \,,\boldsymbol{\bar{\delta }}_{2^{M}}\) are extreme points of \(\mathcal{U}.\) It remains to show that \(\mathcal{U} = co\left (\boldsymbol{\bar{\delta }}_{1},\cdots \,,\boldsymbol{\bar{\delta }}_{2^{M}}\right ).\) For any \(\boldsymbol{\delta =} \left [\delta _{0},\delta _{1},\cdots \,,\delta _{M-1}\right ]^{T} \in co\left (\boldsymbol{\bar{\delta }}_{1},\cdots \,,\boldsymbol{\bar{\delta }}_{2^{M}}\right ),\) there exists \(\lambda _{i} \geq 0,\ i = 1,\cdots \,,2^{M},\) such that \(\boldsymbol{\delta }=\sum \limits _{ i=1}^{2^{M} }\lambda _{i}\boldsymbol{\bar{\delta }}_{i}\) and \(\sum \limits _{i=1}^{2^{M} }\lambda _{i} = 1.\) Then, \(\delta _{k} =\sum \limits _{ i=1}^{2^{M} }\lambda _{i}\bar{\delta }_{i,k},\) where \(\bar{\delta }_{i,k}\) denotes the \(k\) th element of \(\boldsymbol{\bar{\delta }}_{i}.\) From (10.18), we have

$$\displaystyle{ \left \vert \delta _{k}\right \vert = \left \vert \sum \limits _{i=1}^{2^{M} }\lambda _{i}\bar{\delta }_{i,k}\right \vert \leq \sum \limits _{i=1}^{2^{M} }\lambda _{i}\left \vert \bar{\delta }_{i,k}\right \vert =\sum \limits _{ i=1}^{2^{M} }\lambda _{i}\varepsilon _{k} =\varepsilon _{k}. }$$

Thus, \(\boldsymbol{\delta }\in \mathcal{U},\) and hence, \(co\left (\boldsymbol{\bar{\delta }}_{1},\cdots \,,\boldsymbol{\bar{\delta }}_{2^{M}}\right ) \subset \mathcal{U}\). On the other hand, let \(\boldsymbol{\delta =} \left [\delta _{0},\delta _{1},\cdots \,,\delta _{M-1}\right ]^{T}\) with \(\left \vert \delta _{i}\right \vert \leq \varepsilon _{i},\ i = 0,1,\cdots \,,M - 1.\) Since \(\left \vert \delta _{0}\right \vert \leq \varepsilon _{0},\) there exists a \(\lambda _{0},\ 0 \leq \lambda _{0} \leq 1,\) such that \(\delta _{0} =\lambda _{0}\varepsilon _{0} -\left (1 -\lambda _{0}\right )\varepsilon _{0}.\) Since \(co\left (\boldsymbol{\bar{\delta }}_{1},\cdots \,,\boldsymbol{\bar{\delta }}_{2^{M}}\right )\) is convex and

$$\displaystyle\begin{array}{rcl} & \left [\delta _{0},\varepsilon _{1},\cdots \,,\varepsilon _{M-1}\right ]^{T} =\lambda _{0}\left [\varepsilon _{0},\varepsilon _{1},\cdots \,,\varepsilon _{M-1}\right ]^{T}& {}\\ & +\left (1 -\lambda _{0}\right )\left [-\varepsilon _{0},\varepsilon _{1},\cdots \,,\varepsilon _{M-1}\right ]^{T}, & {}\\ \end{array}$$

we have

$$\displaystyle{ \left [\delta _{0},\varepsilon _{1},\cdots \,,\varepsilon _{M-1}\right ]^{T} \in co\left (\boldsymbol{\bar{\delta }}_{ 1},\cdots \,,\boldsymbol{\bar{\delta }}_{2^{M}}\right ). }$$

Since \(\left \vert \delta _{1}\right \vert \leq \varepsilon _{1},\) there exists a \(\lambda _{1}\) such that \(\delta _{1} =\lambda _{1}\varepsilon _{1} -\left (1 -\lambda _{1}\right )\varepsilon _{1}\) and 0 ≤ λ 1 ≤ 1. Thus,

$$\displaystyle\begin{array}{rcl} & \left [\delta _{0},\delta _{1},\varepsilon _{2},\cdots \,,\varepsilon _{M-1}\right ]^{T} =\lambda _{1}\left [\delta _{0},\varepsilon _{1},\varepsilon _{2},\cdots \,,\varepsilon _{M-1}\right ]^{T} & {}\\ & +\left (1 -\lambda _{1}\right )\left [\delta _{0},-\varepsilon _{1},\varepsilon _{2},\cdots \,,\varepsilon _{M-1}\right ]^{T} \in co\left (\boldsymbol{\bar{\delta }}_{1},\cdots \,,\boldsymbol{\bar{\delta }}_{2^{M}}\right ).& {}\\ \end{array}$$

Continuing this process, we can show that \(\boldsymbol{\delta \!=\!} \left [\delta _{0},\delta _{1},\cdots \,,\delta _{M-1}\right ]^{T}\!\! \in \! co\left (\boldsymbol{\bar{\delta }}_{1},\cdots \,,\boldsymbol{\bar{\delta }}_{2^{M}}\right ).\) Hence, \(\mathcal{U}\subset co\left (\boldsymbol{\bar{\delta }}_{1},\cdots \,,\boldsymbol{\bar{\delta }}_{2^{M}}\right ).\) Therefore, \(\mathcal{U} = co\left (\boldsymbol{\bar{\delta }}_{1},\cdots \,,\boldsymbol{\bar{\delta }}_{2^{M}}\right ).\)

Proof.

From (10.8), we see that \(\gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta })\) is in quadratic form with respect to \(\boldsymbol{\delta }\). Furthermore, \(\gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta }) \geq 0\) for any \(\boldsymbol{\delta.}\) Thus, we can write \(\gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta })\) in the form below.

$$\displaystyle{ \gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta }) =\boldsymbol{\delta } ^{T}Q\boldsymbol{\delta + q}^{T}\boldsymbol{\delta +} q, }$$

where \(Q = \left (Q^{1/2}\right )^{T}Q^{1/2}\) is a semi-positive definite matrix, \(\boldsymbol{q}\) and q are corresponding vector and constant. For any \(\lambda,\ 0 \leq \lambda \leq 1\), \(\boldsymbol{\delta }_{1}\) and \(\boldsymbol{\delta }_{2},\) we have

$$\displaystyle\begin{array}{rcl} & & \lambda \gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta }_{1}) + \left (1-\lambda \right )\gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta }_{2}) {}\\ & & -\gamma (\boldsymbol{h},\boldsymbol{g},\lambda \boldsymbol{\delta }_{1} + \left (1-\lambda \right )\boldsymbol{\delta }_{2}) {}\\ & =& \lambda \boldsymbol{\delta }_{1}^{T}Q\boldsymbol{\delta }_{ 1} + \left (1-\lambda \right )\boldsymbol{\delta }_{2}^{T}Q\boldsymbol{\delta }_{ 2} -\lambda ^{2}\boldsymbol{\delta }_{ 1}^{T}Q\boldsymbol{\delta }_{ 1} {}\\ & & -\left (1-\lambda \right )^{2}\boldsymbol{\delta }_{ 2}^{T}Q\boldsymbol{\delta }_{ 2} - 2\lambda \left (1-\lambda \right )\boldsymbol{\delta }_{1}^{T}Q\boldsymbol{\delta }_{ 2} {}\\ & =& \lambda \left (1-\lambda \right )\left (\boldsymbol{\delta }_{1}^{T}Q\boldsymbol{\delta }_{ 1} +\boldsymbol{\delta }_{ 2}^{T}Q\boldsymbol{\delta }_{ 2} - 2\boldsymbol{\delta }_{1}^{T}Q\boldsymbol{\delta }_{ 2}\right ) {}\\ & =& \lambda \left (1-\lambda \right )\left [\left (Q^{1/2}\boldsymbol{\delta }_{ 1}\right )^{T}Q^{1/2}\boldsymbol{\delta }_{ 1}\right. {}\\ & & \left.+\left (Q^{1/2}\boldsymbol{\delta }_{ 2}\right )^{T}Q^{1/2}\boldsymbol{\delta }_{ 2} - 2\left (Q^{1/2}\boldsymbol{\delta }_{ 1}\right )^{T}Q^{1/2}\boldsymbol{\delta }_{ 2}\right ] {}\\ & \geq & 0. {}\\ \end{array}$$

Thus, \(\gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta })\) is a convex function with respect to \(\boldsymbol{\delta }\). Suppose that \(\boldsymbol{\delta }^{{\ast}} =\arg \max \limits _{\boldsymbol{\delta }\in \mathcal{U}}\gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta })\) and \(\bar{\gamma }=\max \left \{\gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\bar{\delta }}_{1}),\cdots \,,\gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\bar{\delta }}_{2^{M}})\right \}.\) From Theorem 10.1, we know that there exists \(\lambda _{i} \geq 0,\ 0 \leq i \leq 2^{M},\) with \(\sum \limits _{i=1}^{2^{M} }\lambda _{i} = 1,\) such that \(\boldsymbol{\delta }^{{\ast}} =\sum \limits _{ i=1}^{2^{M} }\lambda _{i}\boldsymbol{\bar{\delta }}_{i}.\) Since \(\gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta })\) is a convex function with respect to \(\boldsymbol{\delta }\), we have

$$\displaystyle\begin{array}{rcl} \gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta }^{{\ast}})& =& \gamma (\boldsymbol{h},\boldsymbol{g},\sum \limits _{ i=1}^{2^{M} }\lambda _{i}\boldsymbol{\bar{\delta }}_{i}) {}\\ & \leq & \sum \limits _{i=1}^{2^{M} }\lambda _{i}\gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\bar{\delta }}_{i}) \leq \sum \limits _{i=1}^{2^{M} }\lambda _{i}\bar{\gamma } =\bar{\gamma }. {}\\ \end{array}$$

Thus, the maximum of \(\gamma (\boldsymbol{h},\boldsymbol{g},\boldsymbol{\delta })\) in \(\mathcal{U}\) is attained at one of \(\boldsymbol{\bar{\delta }}_{1},\cdots \,,\boldsymbol{\bar{\delta }}_{2^{M}}.\)

Proof of Theorem 10.3.

Since

$$\displaystyle\begin{array}{rcl} & & \boldsymbol{h}^{T}Re\left \{\varPsi (e^{j\omega },\boldsymbol{\delta })\right \}\boldsymbol{g} {}\\ & \boldsymbol{=}& \frac{1} {D}\sum _{m=0}^{M-1}(1 +\delta _{ m})\psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right ) {}\\ & =& \frac{1} {D}\sum _{m=0}^{M-1}\psi _{ r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right ) + \frac{1} {D}\sum _{m=0}^{M-1}\delta _{ m}\psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right ). {}\\ \end{array}$$

Hence,

$$\displaystyle\begin{array}{rcl} & & \max _{\boldsymbol{\delta }\in \mathcal{U}}\boldsymbol{h}^{T}Re\left \{\varPsi (e^{j\omega },\boldsymbol{\delta })\right \}\boldsymbol{g} {}\\ & \boldsymbol{=}& \frac{1} {D}\sum _{m=0}^{M-1}\psi _{ r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right ) +\max _{\boldsymbol{\delta }\in \mathcal{U}}\frac{1} {D}\sum _{m=0}^{M-1}\delta _{ m}\psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right ). {}\\ \end{array}$$

For any \(\boldsymbol{\delta =} \left [\delta _{0},\delta _{1},\cdots \,,\delta _{M-1}\right ]^{T} \in \mathcal{U}\), we have

$$\displaystyle\begin{array}{rcl} & & \left \vert \frac{1} {D}\sum _{m=0}^{M-1}\delta _{ m}\psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right )\right \vert {}\\ & \leq & \frac{1} {D}\sum _{m=0}^{M-1}\left \vert \delta _{ m}\right \vert \left \vert \psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right )\right \vert {}\\ & \leq & \frac{1} {D}\sum _{m=0}^{M-1}\varepsilon _{ m}\left \vert \psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right )\right \vert. {}\\ \end{array}$$

Hence,

$$\displaystyle{ \max _{\boldsymbol{\delta }\in \mathcal{U}}\frac{1} {D}\sum _{m=0}^{M-1}\delta _{ m}\psi _{r,m}\left (w,\boldsymbol{h},\boldsymbol{g}\right ) \leq \frac{1} {D}\sum _{m=0}^{M-1}\varepsilon _{ m}\left \vert \psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right )\right \vert. }$$
(10.42)

On the other hand, taking \(\boldsymbol{\tilde{\delta }=} \left [\tilde{\delta }_{0},\tilde{\delta }_{1},\cdots \,,\tilde{\delta }_{M-1}\right ]^{T},\) where \(\tilde{\delta }_{m} =\varepsilon _{m}\psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right )/\left \vert \psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right )\right \vert,\) yields

$$\displaystyle\begin{array}{rcl} & & \frac{1} {D}\sum _{m=0}^{M-1}\tilde{\delta }_{ m}\psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right ) {}\\ & =& \frac{1} {D}\sum _{m=0}^{M-1}\varepsilon _{ m}\left (\psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right )\right )^{2}/\left \vert \psi _{ r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right )\right \vert {}\\ & =& \frac{1} {D}\sum _{m=0}^{M-1}\varepsilon _{ m}\left \vert \psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right )\right \vert. {}\\ \end{array}$$

Combining (10.42) and (10.43), we obtain

$$\displaystyle{ \max _{\boldsymbol{\delta }\in \mathcal{U}}\frac{1} {D}\sum _{m=0}^{M-1}\delta _{ m}\psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right ) = \frac{1} {D}\sum _{m=0}^{M-1}\varepsilon _{ m}\left \vert \psi _{r,m}\left (\omega,\boldsymbol{h},\boldsymbol{g}\right )\right \vert. }$$
(10.43)

Thus, (10.20) is obtained. The validity of (10.21)–(10.23) can be established similarly. Thus, the proof is complete.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiang, L., Wu, C., Wang, X., Teo, K.L. (2015). The Worst-Case DFT Filter Bank Design with Subchannel Variations. In: Xu, H., Wang, S., Wu, SY. (eds) Optimization Methods, Theory and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47044-2_10

Download citation

Publish with us

Policies and ethics