Alaptide as Transdermal Permeation Modifier

Abstract

Based on the fact that alaptide is able to influence the creation and function of keratinocytes, it was supposed that alaptide could be used as a transdermal permeation modifier. Various APIs (bases, acids, salts, neutral molecules, small molecules, steroid-like molecules) were tested on their transdermal permeation in the mixture with micronized and/or nanonized alaptide as a transdermal permeation modifier. Also the influence of the type of formulation (ointment, cream, gel) on the effect of alaptide on skin was investigated intensively. It was observed that under specific conditions alaptide is able to suppress permeation/absorption of compounds through the skin, which can limit the site of action of potentially hazardous/toxic drugs to skin surface. The skin curative activity of alaptide can be helpful in reduction of possible skin irritant/injurious effects of permeating compounds. In transdermal application alaptide causes an increase or a decrease, in dependence on the used concentration, physical state and supporting medium (pharmaceutical formulation), in permeation/absorption of drugs into the skin and/or through the skin. The concentration of the used drug was increased at the place of administration, and/or the systemic concentration was increased, or it was ensured that drugs acted only on the skin surface/in the skin surface layer and did not penetrate into the deeper skin layers or did not have any systemic effect. Although alaptide was found in the 1980s of the twentieth century, even now it has great potential either as an active pharmaceutical ingredient or a permeation modifier.

Keywords

Alaptide Drugs Nanoparticles Skin Transdermal enhancers Franz diffusion cell Semisolid formulations Transdermal therapeutic systems 

Notes

Acknowledgement

This study was supported by the Grant Agency of the Czech Republic (Czech Science Foundation) GAČR P304/11/2246, by the Technology Agency of the Czech Republic TA04010065 and by IGA VFU Brno 302/2015/FaF. Thanks to all our colleagues and numerous graduate and undergraduate students who participated in the evaluation of the discussed alaptide formulations.

References

  1. Blažíčková S, Rovenský J, Kasafírek E, Buc M (1996) The immunomodulatory properties of low-molecular tri- and tetrapeptides. Folia Biol 42(1–2):57–59Google Scholar
  2. Brychtová K, Jampílek J, Opatřilová R, Raich I, Farsa O, Csőllei J (2010a) Synthesis, physico-chemical properties and penetration activity of alkyl-6-(2,5-dioxopyrrolidin-1-yl)-2-(2-oxopyrrolidin-1-yl)hexanoates as potential transdermal penetration enhancers. Bioorg Med Chem 18(1):73–79CrossRefPubMedGoogle Scholar
  3. Brychtová K, Opatřilová R, Raich I, Kalinowski D, Dvořáková L, Plaček L et al (2010b) Investigating the activity of 2-substituted alkyl-6-(2,5-dioxopyrrolidin-1-yl)hexanoates as skin penetration enhancers. Bioorg Med Chem 18(24):8556–8565CrossRefPubMedGoogle Scholar
  4. Brychtová K, Dvořáková L, Opatřilová R, Raich I, Káčerová S, Plaček L et al (2012) Investigation of substituted 6-aminohexanoates as skin penetration enhancers. Bioorg Med Chem 20(1):86–95CrossRefPubMedGoogle Scholar
  5. Celis ME, Taleisnik S, Walter R (1971) Regulation of formation and proposed structure of the factor inhibiting the release of melanocyte-stimulating hormone. Proc Natl Acad Sci U S A 68(7):1428–1433PubMedCentralCrossRefPubMedGoogle Scholar
  6. Černíková A, Opatřilová R, Jampílek J (2014a) Rapid informative screening of nano-alaptide as potential transdermal permeation enhancer of acetylsalicylic acid and paracetamol. Mil Med Sci Lett 83(1):34–39Google Scholar
  7. Černíková A, Opatřilová R, Bobál P, Jampílek J (2014b) Rapid screening of permeation of rutin through skin using alaptide enantiomers. ADMET 2(4):248–253Google Scholar
  8. Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M et al (2009) Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 129(8):1892–1908CrossRefPubMedGoogle Scholar
  9. Coufalová L, Mrózek L, Rárová L, Plaček L, Opatřilová R, Dohnal J et al (2013) New propanoyloxy derivatives of 5β-cholan-24-oic acid as drug absorption modifiers. Steroids 78(5):435–453Google Scholar
  10. Douša M, Lemr K (2011) Liquid chromatographic method for enantiopurity control of alaptide using polysaccharide stationary phases. J Sep Sci 34(12):1402–1406CrossRefPubMedGoogle Scholar
  11. Evrard D, Touitou E, Kolusheva S, Fishov Y, Jelinek R (2001) A new colorimetric assay for studying and rapid screening of membrane penetration enhancers. Pharm Res 18(7):943–949CrossRefPubMedGoogle Scholar
  12. Fang JY, Tsai TH, Hung CF, Wong WW (2004) Development and evaluation of the essential oil from Magnolia fargesii for enhancing the transdermal absorption of theophylline and cianidanol. J Pharm Pharmacol 56(12):1493–1500CrossRefPubMedGoogle Scholar
  13. Franz TJ (1975) Percutaneous absorption on the relevance of in vitro data. J Invest Dermatol 64(3):190–195CrossRefPubMedGoogle Scholar
  14. Godwin DA, Michniak BB, Player MR, Sowell JW (1997) Transdermal and dermal enhancing activity of pyrrolidinones in hairless mouse skin. Int J Pharm 155(2):241–250CrossRefGoogle Scholar
  15. Harding CR, Scott IR (2002) Stratum corneum moisturizing factors. In: Leyden JJ, Rawling AW (eds) Skin moisturization. Informa Health Care, London, pp 61–80Google Scholar
  16. Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH (2006) Pig ear skin ex vivo as a model for in vivo dermatopharmacokinetic studies in man. Pharm Res 23(8):1850–1856CrossRefPubMedGoogle Scholar
  17. Hliňák Z, Krejčí I, Hondlík J, Yamamoto A (1990) Behavioral consequences of sodium nitrite hypoxia in male rats: amelioration with alaptide treatment. Methods Find Exp Clin Pharmacol 12:385–393PubMedGoogle Scholar
  18. Hliňák Z, Krejčí I (1991) Social recognition in male rats: age differences and modulation by MIF-1 and alaptide. Physiol Res 40(1):59–67PubMedGoogle Scholar
  19. Hliňák Z, Krejčí I (1992) Prolonged social recognition in male rats treated with alaptide or oxiracetam. Behav Pharmacol 3(2):129–131PubMedGoogle Scholar
  20. Hliňák Z, Vinšová J, Kasafírek E (1996) Effect of alaptide, its analogues and oxiracetam on memory for an elevated plus-maze in mice. Eur J Pharmacol 314(1–2):1–7PubMedGoogle Scholar
  21. Hliňák Z, Krejčí I (2005) Oxiracetam pre- but not post-treatment prevented social recognition deficits produced with trimethyltin in rats. Behav Brain Res 161(2):213–219CrossRefPubMedGoogle Scholar
  22. Hliňák Z, Krejčí I, Hynie S, Klenerová V (2008) Dipeptide “alaptide” prevented impairments in spontaneous behavior produced with trimethyltin in male rats. Neuro Endocrinol Lett 29(6):917–923PubMedGoogle Scholar
  23. Jacobi U, Kaiser M, Toll R, Mangelsdorf S, Audring H, Otberg N et al (2007) Porcine ear skin: an in vitro model for human skin. Skin Res Technol 13(1):19–24CrossRefPubMedGoogle Scholar
  24. James W, Berger T, Elston D (2006) Andrews’ diseases of the skin: clinical dermatology, 10th edn. Saunders-Elsevier, Philadelphia, pp 5–6Google Scholar
  25. Jampílek J, Opatřilová R, Řezáčová A, Oktábec Z, Pávek P, Král V et al. inventors; University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Pharmacy, assignee (2011) Alaptide: methods of effecting its solubility, membrane penetration and pharmaceutical compositions for human and veterinary applications. Czech Patent application PV 2011-232Google Scholar
  26. Jampílek J, Brychtová K (2012) Azone analogues: classification, design, and transdermal penetration principles. Med Res Rev 32(5):907–947CrossRefPubMedGoogle Scholar
  27. Jampílek J, Opatřilová R, Dvořáková L. Dohnal, J, inventors; University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Pharmacy, assignee (2012a) Utilization of alaptide as transdermal penetration modifier in pharmaceutical compositions for human and veterinary applications containing glucocorticoids. Czech Patent application PV 2012-72Google Scholar
  28. Jampílek J, Opatřilová R, Dvořáková L, Černíková A, Dohnal J, inventors; University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Pharmacy, assignee (2012b) Utilization of alaptide as transdermal penetration modifier in pharmaceutical compositions for human and veterinary applications containing antimicrobial chemotherapeutics. Czech Patent application PV 2012-511Google Scholar
  29. Jampílek J, Opatřilová R. Coufalová L, Černíková A, Dohnal J, inventors; University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Pharmacy, assignee (2013a) Utilization of alaptide as transdermal penetration modifier in pharmaceutical compositions for human and veterinary applications containing anti-inflammatory drugs and/or antimicrobial chemotherapeutics. WO/2013/020527 A1Google Scholar
  30. Jampílek J, Černíková A, Opatřilová R, Dohnal, J, inventors; University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Pharmacy, assignee (2013b) Utilization of Alaptide as Transdermal Penetration Modifier in Pharmaceutical Compositions for Human and Veterinary Applications Containing Drugs of Central and/or Vegetative Nervous System and/or Sex Hormones or Genital System Modulators. Czech Patent application PV 2013-1000Google Scholar
  31. Jampílek J, Opatřilová R, Řezáčová A, Oktábec Z, Dohnal J, inventors; University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Pharmacy, assignee (2014a) Alaptide: Methods of effecting its solubility, membrane penetration and pharmaceutical compositions for human and veterinary applications. WO/2014/019556 A1Google Scholar
  32. Jampílek J, Opatřilová R, Dvořáková L, Brychtová K, Dohnal J, inventors; University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Pharmacy, assignee (2014b) Utilization of alaptide as transdermal penetration modifier in pharmaceutical compositions for human and veterinary applications containing nonsteroidal anti-inflammatory and/or antipyretic-analgesic drugs. Czech Patent CZ 304915 B6Google Scholar
  33. Julínek O, Setnička V, Řezáčová A, Dohnal J, Vosátka V, Urbanová M (2010) Product of alaptide synthesis: determination of the absolute configuration. J Pharm Biomed Anal 53(4):958–961CrossRefPubMedGoogle Scholar
  34. Kasafírek E, Vanžura J, Krejčí I, Křepelka J, Dlabač A, Valchář M, inventors; SPOFA – United Pharmaceutical Works & Research Institute for Pharmacy and Biochemistry, assignees (1984 & 1986) 2,5-Piperazinedione derivs. Belgian Patent Belg. 897843. Czechoslovakian Patent CS 231227Google Scholar
  35. Kasafírek E, Šturc A, Roubalová A (1992a) Linear tri- and tetrapeptides acting as prodrugs. Collect Czech Chem Commun 57(1):179–187CrossRefGoogle Scholar
  36. Kasafírek E, Rybák M, Krejčí I, Šturs A, Křepela E, Šedo A (1992b) Two-step generation of spirocyclic dipeptides from linear peptide ethyl ester precursors. Life Sci 50(3):187–193CrossRefPubMedGoogle Scholar
  37. Kasafírek E, Korbová L, Kohout J, Jirásková M, Krejčí I, Galatík A, inventors; SPOFA – United Pharmaceutical Works & Research Institute for Pharmacy and Biochemistry, assignees (1992c) Preparation for local therapy of cutaneous and mucosal lesions. Czechoslovakian Patent CS 276270Google Scholar
  38. Kasafírek E, Krejčí I, Hliňák Z, Valchář M, Dobrovský K, Šturc A et al., inventors; SPOFA – United Pharmaceutical Works & Research Institute for Pharmacy and Biochemistry, assignees (1994) Neuroprotective composition for preventing or treating of central nervous system impairment. United States Patent US 5318973Google Scholar
  39. Katz M, Ben-Shlush I, Kolusheva S, Jelínek R (2006) Rapid colorimetric screening of drug interaction and penetration through lipid barriers. Pharm Res 23(3):580–588CrossRefPubMedGoogle Scholar
  40. Kezic S, Kammeyer A, Calkoen F, Fluhr JW, Bos JD (2009) Natural moisturizing factor components in the stratum corneum as biomarkers of filaggrin genotype: evaluation of minimally invasive methods. Br J Dermatol 161(5):1098–1104CrossRefPubMedGoogle Scholar
  41. Korbová L, Čížková J, Kohout J, Kasafírek E, Krejčí I, Vanžura J (1988) Action of cyclo(l-alanyl-1-amino-1-cyclopentanecarbonyl)-alaptide – on experimental gastric ulcers in rats. Cas Lek Cesk 127(51):1574–1577PubMedGoogle Scholar
  42. Korbová L, Kohout J, Kasafírek E (1994) Action of orally administered alaptide on experimental gastric lesions in rats. Ces Slov Gastroenterol 48(4):170–182Google Scholar
  43. Kosař K, Vanžura J (1988) Embryotoxicity of l-prolyl-l-leucyl-glycinamide, cyclo(1-amino-cyclopentanecarbonyl-alanyl) and cyclo(glycyl-leucyl), new potential neuropeptides in chick embryos. Pharmazie 43(10):715–716PubMedGoogle Scholar
  44. Krejčí I, Dlabač A, Vanžura J, Kosnař J (1986) Effect of a spirocyclic cyclodipeptide derivative of MIF on passive avoidance behavior and amnesia in rats. Act Nerv Super 28(4):241–246Google Scholar
  45. Lapka R (1991) Pharmacokinetics and brain entry of alaptide, a novel nootropic agent, in mice, rats and rabbits. J Pharm Pharmacol 43(12):874–876CrossRefPubMedGoogle Scholar
  46. Maixner J, Rohlíček J, Kratochvíl B, Šturc A (2009) X-ray powder diffraction data for alaptide, 8(S)-methyl-6,9-diazaspiro/4,5/decane-7,10-dione or cyclo(l-Alanyl-1-amino-1-cyclopentan carbonyl), cyclo(l-Ala-Acp). Powder Diffr 24(1):32–34CrossRefGoogle Scholar
  47. McGrath JA, Eady RA, Pope FM (2004). Anatomy and Organization of Human Skin. In: Burns T, Breathnach S, Cox N, Griffiths C (eds) Rook’s textbook of dermatology, 7th edn. Blackwell Publishing, Oxford. pp 3.1–3.84Google Scholar
  48. McGrath JA (2012) Profilaggrin, dry skin, and atopic dermatitis risk: size matters. J Invest Dermatol 132(1):10–11CrossRefPubMedGoogle Scholar
  49. Meyer W, Schwarz K, Neurand K (1978) The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr Probl Dermatol 7(1):39–52PubMedGoogle Scholar
  50. Minaskanian G, Peck JV, inventors; Whitby Research, Inc., assignee (1992) Penetration enhancers for transdermal delivery of systemic agents. United States Patent US 5142044Google Scholar
  51. Mrózek L, Dvořáková L, Mandelová Z, Rárová L, Řezáčová A, Plaček L et al (2011) Investigation of new acyloxy derivatives of cholic acid and their esters as drug absorption modifiers. Steroids 76(10–11):1082–1097CrossRefPubMedGoogle Scholar
  52. Mrózek L, Coufalová L, Rárová L, Plaček L, Opatřilová R, Dohnal J et al (2013) New polyfluorothiopropanoyloxy derivatives of 5β-cholan-24-oic acid designed as drug absorption modifiers. Steroids 78(9):832–844Google Scholar
  53. Nedvídková J, Kasafírek E, Nedvídek J, Pacák K, Schreiber V (1994) An analog of MIF, alaptide: effect on serum prolactin, dopamine receptors and growth of rat adenohypophysis. Endocr Res 20(1):39–46Google Scholar
  54. Nedvídková J, Kasafírek E, Nedvídek J, Pacák K, Schreiber V (1994) An analog of MIF, alaptide: effect on serum prolactin, dopamine receptors and growth of rat adenohypophysis. Endocr Res 20(1):39–46Google Scholar
  55. Ni N, El-Sayed MM, Sanghvi T, Yalkowsky SH (2000) Estimation of the effect of NaCl on the solubility of organic compounds in aqueous solutions. J Pharm Sci 89(12):1620–1625CrossRefPubMedGoogle Scholar
  56. Opatřilová R, Černíková A, Coufalová L, Dohnal J, Jampílek J (2013) In vitro permeation of micronized and nanonized alaptide from semi-solid formulations. Sci World J 2013:Article ID 787283 (8 pages)Google Scholar
  57. Opatřilová R, Jampílek J (2014) Rapid screening of mupirocin skin permeation modification by micronized and nanonized alaptide. ADMET 2(1):56–62Google Scholar
  58. Petersson M, Uvnäs-Moberg K (2004) Prolyl-leucyl-glycinamide shares some effects with oxytocin but decreases oxytocin levels. Physiol Behav 83(3):475–481Google Scholar
  59. Rachakonda VK, Yerramsetty KM, Madihally SV, Robinson RL, Gasem KAM (2008) Screening of chemical penetration enhancers for transdermal drug delivery using electrical resistance of skin. Pharm Res 25(11):2697–2704CrossRefPubMedGoogle Scholar
  60. Rádl S, Kasafírek E, Krejčí I (1990) Alaptide. Drugs Future 15(5):445–447CrossRefGoogle Scholar
  61. Sekkat N, Kalia YN, Guy RH (2002) Biophysical study of porcine ear skin in vitro and its comparison to human skin in vivo. J Pharm Sci 91(11):2376–2381CrossRefPubMedGoogle Scholar
  62. Sloan KB, Beall HD, Taylor HE, Getz JJ, Villaneuva R, Nipper R, Smith K (1998) Transdermal delivery of theophylline from alcohol vehicles. Int J Pharm 171(2):185–193CrossRefGoogle Scholar
  63. Spier HW, Pascher G (1956) Analytical and functional physiology of the skin surface. Hautarzt 7(2):55–60PubMedGoogle Scholar
  64. Šturc A, Kacafírek E, inventors; SPOFA – United Pharmaceutical Works & Research Institute for Pharmacy and Biochemistry, assignees (1992) Process for preparing cyclo-(l-alanyl-1-amino-1-cyclopentanecarbonyl) [alaptide]. Czechoslovakian Patent CS 277132Google Scholar
  65. Vanžura J, Kosař K, Kasafírek E (1986) Inhibition of proliferative activity by cyclic dipeptides: spirocyclic derivatives of 1-aminocyclopentane-carboxylic acid. Toxicol Lett 31(3):189–193CrossRefPubMedGoogle Scholar
  66. Vinšová J, Kosař K, Kasafírek E (1993) Synthesis and antiproliferative activity of spirocyclic cyclodipeptides, derivatives of 1-amino-1-cyclobutanecarboxylic acid. Collect Czech Chem Commun 58(12):2987–2993CrossRefGoogle Scholar
  67. Vinšová J, Kosař K, Kasafírek E (1994) Spirocyclic dipeptides of 1-amino-1-cyclohexanecarboxylic acid. Collect Czech Chem Commun 59(1):195–202CrossRefGoogle Scholar
  68. Williams AC, Barry BW (1989) Urea analogues in propylene glycol as penetration enhancers in human skin. Int J Pharm 56(1):43–50CrossRefGoogle Scholar
  69. Yamane MA, Williams AC, Barry BW (1995) Terpene penetration enhancers in propylene glycol/water co-solvent systems: effectiveness and mechanism of action. J Pharm Pharmacol 47(12A):978–989CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemical Drugs, Faculty of PharmacyUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic

Personalised recommendations