Skip to main content

Abstract

Chapter 1 discusses the various performance parameters and architectures of ADCs. The SAR ADC is presented as the ADC that is most frequently used in industrial applications, because it provides a high resolution (12–18 bit) at a medium sample rate (around 1 MSPS). This chapter therefore presents design and architectural basics and details regarding the components of a SAR ADC [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. McCreary, P. Gray, All-MOS Charge Redistribution Analog-to-Digital Conversion Techniques - Part I, in the IEEE journal of Solid-State Circuits, Volume 10, Issue 6, pp. 371–379, 1975.

    Google Scholar 

  2. Bernd M. Rundel, Timothy V. Kalthoff, Capacitor array having reduced voltage coefficient induced non-linearities, US Patent 6404376, Texas Instruments, 2002, URL: http://www.google.com/patents/US6404376, status of 3/11/2015.

  3. Paul R. Gray, Robert G. Meyer, Analysis and design of analog integrated circuits, John Wiley & Sons Inc., New York/Chichester/Brisbane/Toronto/Singapore, 1993.

    Google Scholar 

  4. Matthew D. Felder, Successive approximation analog-to-digital converter with current steered digital-to-analog converter, US Patent 7209069, Sigmatel, 2007, URL: http://www.google.com.ar/patents/US7209069, status of 3/11/2015.

  5. Frank Ohnhäuser, Martin Allinger, Mario Huemer, Trim Techniques for DC specifications for A/D converters based on successive approximation, AEU - International Journal of Electronics and Communications, Volume 64, Issue 8, pp. 790–793, 2010.

    Google Scholar 

  6. Wolfgang Knappe, Fehlererkennung und Fehlerkorrektur bei Analog/Digital-Umsetzern, PhD. Thesis, Technical University of Munich, 1992.

    Google Scholar 

  7. Khen-Sang Tan, Sami Kiriaki, Michiel de Wit, John W. Fattaruso, Ching-Yuh Tsay, W.E. Matthews, Richard K. Hester, Error correction techniques for high performance differential A/D converters, in the IEEE journal of Solid-State Circuits, Volume 25, Issue 6, pp. 1318–1327, 1990

    Google Scholar 

  8. Data Manual of the ADS7869, Texas Instruments, 2006, URL: http://focus.ti.com/lit/ds/symlink/ads7869.pdf, status of 3/11/2015.

  9. Product datasheet of the ADS8556, Texas Instruments, 2011, URL: http://focus.ti.com/lit/ds/symlink/ads8556.pdf, status of 3/11/2015.

  10. Product datasheet of the AD7656, Analog Devices, 2006, URL: http://www.analog.com/static/imported-files/data_sheets/AD7656_7657_7658.pdf, status of 3/11/2015.

  11. Frank Ohnhaeuser, Miroslav Oljaca, Offset error compensation of input signals in analog-to-digital converter, US Patent 6433712, Texas Instruments, 2002, URL: http://www.google.com.ar/patents/US6433712, status of 3/11/2015.

  12. Robert E. Seymour, Method and circuit for gain and/or offset correction in a capacitor digital-to-analog converter, US Patent 6922165, Texas Instruments, 2005, URL: http://www.google.com.ar/patents/US6922165, status of 3/11/2015.

  13. Bruce Edward Amazeen, Michael C. W. Coln, Scott Wayne, Gerald A. Miller, Mick Mueck, Multi-stage, low-offset, fast-recovery, comparator system and method, US Patent 6429697, Analog Devices, 2002, URL: http://www.google.com.ar/patents/US6429697, status of 3/11/2015.

  14. J.H. Atherto, H.T. Simmonds, An offset reduction technique for use with CMOS integrated comparators and amplifiers, in the IEEE journal of Solid-State Circuits, Volume 27, Issue 8, pp. 1168–1175, 1992.

    Google Scholar 

  15. Y.C. Huang, B.D. Liu, A 1 V CMOS analog comparator using auto-zero and complementary differential-input technique, in the proceedings of the IEEE Asia-Parcific Conference on ASICs, pp. 181–184, 2002.

    Google Scholar 

  16. Frank Ohnhaeuser, Mario Huemer, Methods to Eliminate Dynamic Errors in High-Performance SAR A/D Converter, in the proceedings of the International Symposium on Circuits and Systems (ISCAS2008), pp. 2398–2401, 2008.

    Google Scholar 

  17. Chakravarthy Srinivasan, Kiran M. Godbole, Error correction architecture to increase speed and relax current drive requirements of SAR ADC, US Patent 6747589, Texas Instruments, 2004, URL: http://www.google.com/patents/US6747589, status of 3/11/2015.

  18. K. Bacrania, A 12-bit ADC successive-approximation-type with digital error correction, in the IEEE journal of Solid-State Circuits, Volume 21, Issue 6, pp. 1016–1025, 1986.

    Google Scholar 

  19. Seetharaman Janakiraman, Vikram Varma, Yujendra Mitikiri, SAR ADC providing digital codes with high accuracy and high throughput performance, US Patent 6958722, Texas Instruments, 2005, URL: http://www.google.com.ar/patents/US6958722, status of 3/11/2015.

  20. David M. Jones, Jerry L. Doorenbos, Bandgap reference curvature compensation circuit, US Patent 6255807, Texas Instruments, 2001, URL: http://www.google.com.ar/patents/US6255807, status of 3/11/2015.

  21. Jerry L. Doorenbos, Method of curvature compensation, offset compensation, and capacitance trimming of a switched capacitor band gap reference, US Patent 6060874, Burr-Brown, 2001, URL: http://www.google.com/patents/US6060874, status of 3/11/2015.

  22. K.E. Kuijk, A precision reference voltage source, in the IEEE journal of Solid-State Circuits, Volume 8, Issue 3, pp. 222–226, 1973.

    Google Scholar 

  23. Paul Brokow, A simple three terminal IC bandgap reference, in the IEEE journal of Solid-State Circuits, Volume 9, Issue 6, pp. 670–674, 1974.

    Google Scholar 

  24. H. Banba, A CMOS bandgap reference circuit with sub-1 V operation, In the IEEE journal of Solid-State Circuits, Volume 34, Issue 5, pp. 388–393, 1999.

    Google Scholar 

  25. Keith Sanborn, Dongsheng Ma, Vadim Ivanov, A sub-1 V low-noise bandgap voltage reference, in the IEEE journal of Solid-State Circuits, Volume 42, Issue 11, pp. 2466–2481, 2007

    Google Scholar 

  26. Product datasheet of the ADS7863, Texas Instruments, 2011, URL: http://focus.ti.com/lit/ds/symlink/ads7863.pdf, status of 03/11/2015.

  27. Product datasheet of the ADS8361, Texas Instruments, 2007, URL: http://focus.ti.com/lit/ds/symlink/ads8361.pdf, status of 03/11/2015.

  28. Frank Ohnhaeuser, Mario Huemer, Reference generation for A/D converters, in the proceedings of the International Symposium on Signals, Systems and Electronics (ISSSE2007), pp. 355–358, 2007.

    Google Scholar 

  29. Seetharaman Janakiraman, Kiran M. Godbole, Surendranath Nagesh, Increasing the SNR of successive approximation type ADCs without compromising throughput performance substantially, US Patent 6894627, Texas Instruments, 2005, URL: http://www.google.com.ar/patents/US6894627, status of 3/11/2015.

  30. Christopher Peter Hurrell, Gary Robert Carreau, Analog-to-digital converter with signal-to-noise ratio enhancement, US Patent 7218259, Analog Devices, 2007, URL: http://www.google.com.ar/patents/US7218259, status of 3/11/2015.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohnhäuser, F. (2015). ADCs Based on Successive Approximation. In: Analog-Digital Converters for Industrial Applications Including an Introduction to Digital-Analog Converters. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47020-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47020-6_2

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47019-0

  • Online ISBN: 978-3-662-47020-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics