Skip to main content

Conclusion and Perspective

  • Chapter
  • First Online:
Lanthanide Single Molecule Magnets
  • 1270 Accesses

Abstract

As a new type of lanthanide SMMs, the novel endohedral metallofullerene (EMF) SMMs are introduced in the first part of this chapter. Furthermore, a survey of the organization of SMMs on surfaces and molecular spintronics is provided with an emphasis focusing on the applications of double-decker phthalocyanine lanthanide SMMs in spintronics. Herein, [LnPc2] SMMs were not only used to fabricate three-terminal spin transistor, but its combination with carbon-based nanostructures leaded to the successful design of supramolecular spin valve. Remarkably, the nuclear spin of Tb atom embedded in [TbPc2] SMM can be read out electronically through detecting the conductance jump, indicating the great promise of lanthanide SMMs in future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunbar KR (2012) Editorial for the virtual issue on quantum molecular magnets. Inorg Chem 51(22):12055–12058. doi:10.1021/ic302312m

    Article  Google Scholar 

  2. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113(8):5989–6113. doi:10.1021/cr300297r

    Article  Google Scholar 

  3. Stevenson S, Rice G, Glass T et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401(6748):55–57. doi:10.1038/43415

    Article  ADS  Google Scholar 

  4. Westerström R, Dreiser J, Piamonteze C et al (2012) An endohedral single-molecule magnet with long relaxation times: DySc2N@C80. J Am Chem Soc 134(24):9840–9843. doi:10.1021/ja301044p

    Article  Google Scholar 

  5. Vieru V, Ungur L, Chibotaru LF (2013) Key role of frustration in suppression of magnetization blocking in single-molecule magnets. J Phys Chem Lett 4(21):3565–3569. doi:10.1021/jz4017206

    Article  Google Scholar 

  6. Westerström R, Dreiser J, Piamonteze C et al (2014) Tunneling, remanence, and frustration in dysprosium-based endohedral single-molecule magnets. Phys Rev B 89(6):060406. doi:10.1103/PhysRevB.89.060406

    Article  ADS  Google Scholar 

  7. Gatteschi D, Cornia A, Mannini M et al (2009) Organizing and addressing magnetic molecules. Inorg Chem 48(8):3408–3419. doi:10.1021/ic8013283

    Article  Google Scholar 

  8. Cornia A, Mannini M, Sainctavit P et al (2011) Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces. Chem Soc Rev 40(6):3076–3091. doi:10.1039/c0cs00187b

    Article  Google Scholar 

  9. Clemente-León M, Soyer H, Coronado E et al (1998) Langmuir-blodgett films of single-molecule nanomagnets. Angew Chem Int Ed 37(20):2842–2845. doi:10.1002/(sici)1521-3773(19981102)37:20<2842:aid-anie2842>3.0.co;2-b

    Article  Google Scholar 

  10. Clemente-León M, Coronado E, Forment-Aliaga A et al (2003) Organized assemblies of magnetic clusters. C R Chimie 6(7):683–688. doi:10.1016/S1631-0748(03)00121-8

    Article  Google Scholar 

  11. Coradin T, Larionova J, Smith AA et al (2002) Magnetic nanocomposites built by controlled incorporation of magnetic clusters into mesoporous silicates. Adv Mater 14(12):896–898. doi:10.1002/1521-4095(20020618)14:12<896:aid-adma896>3.0.co;2-e

    Article  Google Scholar 

  12. Clemente-Leon M, Coronado E, Forment-Aliaga A et al (2003) Incorporation of Mn12 single molecule magnets into mesoporous silica. J Mater Chem 13(12):3089–3095. doi:10.1039/b310408g

    Article  Google Scholar 

  13. Ruiz-Molina D, Mas-Torrent M, Gómez J et al (2003) Isolated single-molecule magnets on the surface of a polymeric thin film. Adv Mater 15(1):42–45. doi:10.1002/adma.200390006

    Article  Google Scholar 

  14. Bogani L, Cavigli L, Gurioli M et al (2007) Magneto-optical investigations of nanostructured materials based on single-molecule magnets monitor strong environmental effects. Adv Mater 19(22):3906–3911. doi:10.1002/adma.200700594

    Article  Google Scholar 

  15. Cervetti C, Heintze E, Bogani L (2014) Interweaving spins with their environment: novel inorganic nanohybrids with controllable magnetic properties. Dalton Trans 43(11):4220–4232. doi:10.1039/c3dt52650j

    Article  Google Scholar 

  16. Cornia A, Fabretti AC, Pacchioni M et al (2003) Direct observation of single-molecule magnets organized on gold surfaces. Angew Chem Int Ed 42(14):1645–1648. doi:10.1002/anie.200350981

    Article  Google Scholar 

  17. Naitabdi A, Bucher JP, Gerbier P et al (2005) Self-assembly and magnetism of Mn12 nanomagnets on native and functionalized gold surfaces. Adv Mater 17(13):1612–1616. doi:10.1002/adma.200401623

    Article  Google Scholar 

  18. Zobbi L, Mannini M, Pacchioni M et al (2005) Isolated single-molecule magnets on native gold. Chem Commun 1640–1642. doi:10.1039/b418072k

  19. Coronado E, Forment-Aliaga A, Romero FM et al (2005) Isolated Mn12 single-molecule magnets grafted on gold surfaces via electrostatic interactions. Inorg Chem 44(22):7693–7695. doi:10.1021/ic0508021

    Article  Google Scholar 

  20. Pineider F, Mannini M, Sessoli R et al (2007) Solvent effects on the adsorption and self-organization of Mn12 on Au(111). Langmuir 23(23):11836–11843. doi:10.1021/la7016837

    Article  Google Scholar 

  21. Mannini M, Pineider F, Sainctavit P et al (2009) X-ray magnetic circular dichroism picks out single-molecule magnets suitable for nanodevices. Adv Mater 21(2):167–171. doi:10.1002/adma.200801883

    Article  Google Scholar 

  22. Saywell A, Magnano G, Satterley CJ et al (2010) Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat Commun 1:75. doi:10.1038/ncomms1075

    Article  ADS  Google Scholar 

  23. Voss S, Burgert M, Fonin M et al (2008) A comparative study on the deposition of Mn12 single molecule magnets on the Au(111) surface. Dalton Trans 499–505. doi:10.1039/b712371j

  24. Cornia A, Fabretti AC, Garrisi P et al (2004) Energy-barrier enhancement by ligand substitution in tetrairon(III) single-molecule magnets. Angew Chem Int Ed 43(9):1136–1139. doi:10.1002/anie.200352989

    Article  Google Scholar 

  25. Accorsi S, Barra A-L, Caneschi A et al (2006) Tuning anisotropy barriers in a family of tetrairon(III) single-molecule magnets with an S = 5 ground state. J Am Chem Soc 128(14):4742–4755. doi:10.1021/ja0576381

    Article  Google Scholar 

  26. Mannini M, Pineider F, Danieli C et al (2010) Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468(7322):417–421. doi:10.1038/nature09478

    Article  ADS  Google Scholar 

  27. Pineider F, Mannini M, Danieli C et al (2010) Deposition of intact tetrairon(III) single molecule magnet monolayers on gold: an STM, XPS, and ToF-SIMS investigation. J Mater Chem 20(1):187–194. doi:10.1039/b916895h

    Article  Google Scholar 

  28. Mannini M, Pineider F, Sainctavit P et al (2009) Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat Mater 8(3):194–197. doi:10.1038/nmat2374

    Article  ADS  Google Scholar 

  29. Peisert H, Schwieger T, Auerhammer JM et al (2001) Order on disorder: copper phthalocyanine thin films on technical substrates. J Appl Phys 90(1):466–469. doi:10.1063/1.1375017

    Article  ADS  Google Scholar 

  30. Vitali L, Fabris S, Conte AM et al (2008) Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets. Nano Lett 8(10):3364–3368. doi:10.1021/nl801869b

    Article  ADS  Google Scholar 

  31. Stepanow S, Honolka J, Gambardella P et al (2010) Spin and orbital magnetic moment anisotropies of monodispersed bis(Phthalocyaninato) terbium on a copper surface. J Am Chem Soc 132(34):11900–11901. doi:10.1021/ja105124r

    Article  Google Scholar 

  32. Katoh K, Yoshida Y, Yamashita M et al (2009) Direct observation of lanthanide(III)-phthalocyanine molecules on Au(111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J Am Chem Soc 131(29):9967–9976. doi:10.1021/ja902349t

    Article  Google Scholar 

  33. Komeda T, Isshiki H, Liu J et al (2011) Observation and electric current control of a local spin in a single-molecule magnet. Nat Commun 2:217. doi:10.1038/ncomms1210

    Article  ADS  Google Scholar 

  34. Schwöbel J, Fu Y, Brede J et al (2012) Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets. Nat Commun 3:953. doi:10.1038/ncomms1953

    Article  ADS  Google Scholar 

  35. Lodi Rizzini A, Krull C, Balashov T et al (2011) Coupling single molecule magnets to ferromagnetic substrates. Phys Rev Lett 107(17):177205. doi:10.1103/PhysRevLett.107.177205

    Article  ADS  Google Scholar 

  36. Lodi Rizzini A, Krull C, Balashov T et al (2012) Exchange biasing single molecule magnets: coupling of TbPc2 to antiferromagnetic layers. Nano Lett 12(11):5703–5707. doi:10.1021/nl302918d

    Article  ADS  Google Scholar 

  37. Charlier J-C, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79(2):677–732. doi:10.1103/RevModPhys.79.677

    Article  ADS  Google Scholar 

  38. Bekyarova E, Sarkar S, Wang F et al (2012) Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene. Acc Chem Res 46(1):65–76. doi:10.1021/ar300177q

    Article  Google Scholar 

  39. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5(7):487–496. doi:10.1038/nnano.2010.89

    Article  ADS  Google Scholar 

  40. Bogani L, Danieli C, Biavardi E et al (2009) Single-molecule-magnet carbon-nanotube hybrids. Angew Chem Int Ed 48(4):746–750. doi:10.1002/anie.200804967

    Article  Google Scholar 

  41. Giusti A, Charron G, Mazerat S et al (2009) Magnetic bistability of individual single-molecule magnets grafted on single-wall carbon nanotubes. Angew Chem Int Ed 48(27):4949–4952. doi:10.1002/anie.200901806

    Article  Google Scholar 

  42. Kyatskaya S, Mascarós JRG, Bogani L et al (2009) Anchoring of rare-earth-based single-molecule magnets on single-walled carbon nanotubes. J Am Chem Soc 131(42):15143–15151. doi:10.1021/ja906165e

    Article  Google Scholar 

  43. Gonidec M, Biagi R, Corradini V et al (2011) Surface supramolecular organization of a terbium(III) double-decker complex on graphite and its single molecule magnet behavior. J Am Chem Soc 133(17):6603–6612. doi:10.1021/ja109296c

    Article  Google Scholar 

  44. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7(3):179–186. doi:10.1038/nmat2133

  45. Heersche HB, de Groot Z, Folk JA et al (2006) Electron transport through single Mn12 molecular magnets. Phys Rev Lett 96(20):206801. doi:10.1103/PhysRevLett.96.206801

    Article  ADS  Google Scholar 

  46. Jo M-H, Grose JE, Baheti K et al (2006) Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett 6(9):2014–2020. doi:10.1021/nl061212i

    Article  ADS  Google Scholar 

  47. Zyazin AS, van den Berg JWG, Osorio EA et al (2010) Electric field controlled magnetic anisotropy in a single molecule. Nano Lett 10(9):3307–3311. doi:10.1021/nl1009603

    Article  ADS  Google Scholar 

  48. Zyazin AS, van der Zant HSJ, Wegewijs MR et al (2011) High-spin and magnetic anisotropy signatures in three-terminal transport through a single molecule. Synth Met 161(7–8):591–597. doi:10.1016/j.synthmet.2010.11.050

    Article  Google Scholar 

  49. Burzurí E, Zyazin AS, Cornia A et al (2012) Direct observation of magnetic anisotropy in an individual Fe4 single-molecule magnet. Phys Rev Lett 109(14):147203. doi:10.1103/PhysRevLett.109.147203

    Article  ADS  Google Scholar 

  50. Hong K, Kim WY (2013) Fano-resonance-driven spin-valve effect using single-molecule magnets. Angew Chem Int Ed 52(12):3389–3393. doi:10.1002/anie.201208816

    Article  Google Scholar 

  51. Vincent R, Klyatskaya S, Ruben M et al (2012) Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488(7411):357–360. doi:10.1038/nature11341

    Article  ADS  Google Scholar 

  52. Thiele S, Vincent R, Holzmann M et al (2013) Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor. Phys Rev Lett 111(3):037203. doi:10.1103/PhysRevLett.111.037203

    Article  ADS  Google Scholar 

  53. Thiele S, Balestro F, Ballou R et al (2014) Electrically driven nuclear spin resonance in single-molecule magnets. Science 344(6188):1135–1138. doi:10.1126/science.1249802

    Article  ADS  Google Scholar 

  54. Urdampilleta M, Klyatskaya S, Cleuziou JP et al (2011) Supramolecular spin valves. Nat Mater 10(7):502–506. doi:10.1038/nmat3050

    Article  ADS  Google Scholar 

  55. Candini A, Klyatskaya S, Ruben M et al (2011) Graphene spintronic devices with molecular nanomagnets. Nano Lett 11(7):2634–2639. doi:10.1021/nl2006142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkui Tang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, J., Zhang, P. (2015). Conclusion and Perspective. In: Lanthanide Single Molecule Magnets. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46999-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46999-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46998-9

  • Online ISBN: 978-3-662-46999-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics