Skip to main content

Single-Molecule Toroics and Multinuclear Lanthanide Single-Molecule Magnets

  • Chapter
  • First Online:
Book cover Lanthanide Single Molecule Magnets

Abstract

In this chapter, we first give a clear definition for single-molecule toroic (SMT) on the basis of the toroidal magnetic moments of ground doublets present in triangular Dy3 SMMs, which is further exemplified via several typical Dy-based single-molecular magnets (SMMs) showing toroidal magnetic moments. Secondly, we examine the typical polynuclear lanthanide complexes showing SMM behavior, and three main synthetic strategies are given as follows: building block approach, organometallic approach, and multidentate ligand approach. The information extracted from such investigation is expected to enhance our understanding to SMM performances of polynuclear lanthanide complexes and facilitate their future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Roy JJ, Jeletic M, Gorelsky SI et al (2013) An organometallic building block approach to produce a multidecker 4f single-molecule magnet. J Am Chem Soc 135(9):3502–3510. doi:10.1021/ja310642h

    Article  Google Scholar 

  2. Blagg RJ, Ungur L, Tuna F et al (2013) Magnetic relaxation pathways in lanthanide single-molecule magnets. Nat Chem 5(8):673–678. doi:10.1038/nchem.1707

    Article  Google Scholar 

  3. Ganivet CR, Ballesteros B, de la Torre G et al (2013) Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic TbIII bis (phthalocyaninate). Chem Eur J 19(4):1457–1465. doi:10.1002/chem.201202600

    Article  Google Scholar 

  4. Tang J, Hewitt I, Madhu NT et al (2006) Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem Int Ed 45(11):1729–1733. doi:10.1002/anie.200503564

    Article  Google Scholar 

  5. Luzon J, Bernot K, Hewitt IJ et al (2008) Spin chirality in a molecular dysprosium triangle: the archetype of the noncollinear ising model. Phys Rev Lett 100(24):247205. doi:10.1103/PhysRevLett.100.247205

    Article  ADS  Google Scholar 

  6. Guo Y-N, Xu G-F, Guo Y et al (2011) Relaxation dynamics of dysprosium(III) single molecule magnets. Dalton Trans 40(39):9953–9963. doi:10.1039/C1DT10474H

    Article  Google Scholar 

  7. Plokhov DI, Popov AI, Zvezdin AK (2011) Quantum magnetoelectric effect in the molecular crystal Dy3. Phys Rev B 84(22):224436. doi:10.1103/PhysRevB.84.224436

    Article  ADS  Google Scholar 

  8. Ungur L, Lin S-Y, Tang J et al (2014) Single-molecule toroics in Ising-type lanthanide molecular clusters. Chem Soc Rev 43(20):6894–6905. doi:10.1039/c4cs00095a

    Article  Google Scholar 

  9. Van Aken BB, Rivera J-P, Schmid H et al (2007) Observation of ferrotoroidic domains. Nature 449(7163):702–705. doi:10.1038/nature06139

    Article  ADS  Google Scholar 

  10. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442(7104):759–765. doi:10.1038/nature05023

    Article  ADS  Google Scholar 

  11. Spaldin NA, Fiebig M, Mostovoy M (2008) The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J Phys Condens Matter 20:434203. doi:10.1088/0953-8984/20/43/434203

  12. Zimmermann AS, Meier D, Fiebig M (2014) Ferroic nature of magnetic toroidal order. Nat Commun 5. doi:10.1038/ncomms5796

  13. Chibotaru LF, Ungur L, Soncini A (2008) The origin of nonmagnetic kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. Angew Chem Int Ed 47(22):4126–4129. doi:10.1002/anie.200800283

    Article  Google Scholar 

  14. Guo P-H, Liu J-L, Zhang Z-M et al (2012) The first Dy4 single-molecule magnet with a toroidal magnetic moment in the ground state. Inorg Chem 51(3):1233–1235. doi:10.1021/ic202650f

    Article  MathSciNet  Google Scholar 

  15. Ungur L, Langley SK, Hooper TN et al (2012) Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring. J Am Chem Soc 134(45):18554–18557. doi:10.1021/ja309211d

    Article  Google Scholar 

  16. Ungur L, Van den Heuvel W, Chibotaru LF (2009) Ab initio investigation of the non-collinear magnetic structure and the lowest magnetic excitations in dysprosium triangles. New J Chem 33(6):1224–1230. doi:10.1039/B903126J

    Article  Google Scholar 

  17. Xue S, Chen X-H, Zhao L et al (2012) Two bulky-decorated triangular dysprosium aggregates conserving vortex-spin structure. Inorg Chem 51(24):13264–13270. doi:10.1021/ic301785v

    Article  Google Scholar 

  18. Wang Y-X, Shi W, Li H et al (2012) A single-molecule magnet assembly exhibiting a dielectric transition at 470 K. Chem Sci 3(12):3366–3370. doi:10.1039/C2SC21023A

    Article  MathSciNet  Google Scholar 

  19. Langley SK, Moubaraki B, Forsyth CM et al (2010) Structure and magnetism of new lanthanide 6-wheel compounds utilizing triethanolamine as a stabilizing ligand. Dalton Trans 39(7):1705–1708. doi:10.1039/B921843B

    Article  Google Scholar 

  20. Hewitt IJ, Tang J, Madhu NT et al (2010) Coupling Dy3 Triangles Enhances Their Slow Magnetic Relaxation. Angew Chem Int Ed 49(36):6352–6356. doi:10.1002/anie.201002691

    Article  Google Scholar 

  21. Hussain B, Savard D, Burchell TJ et al (2009) Linking high anisotropy Dy3 triangles to create a Dy6 single-molecule magnet. Chem Commun 9:1100–1102. doi:10.1039/B818295G

    Article  Google Scholar 

  22. Lin S-Y, Wernsdorfer W, Ungur L et al (2012) Coupling Dy3 Triangles to Maximize the Toroidal Moment. Angew Chem Int Ed 51:12767–12771. doi:10.1002/anie.201206602

    Article  Google Scholar 

  23. Novitchi G, Pilet G, Ungur L et al (2012) Heterometallic CuII/DyIII 1D chiral polymers: chirogenesis and exchange coupling of toroidal moments in trinuclear Dy3 single molecule magnets. Chem Sci 3(4):1169–1176. doi:10.1039/c2sc00728b

    Article  Google Scholar 

  24. Hänninen MM, Mota AJ, Aravena D et al. (2014) Two C3-Symmetric \({\text{Dy}}^{\text{III}}_{ 3}\) complexes with triple di-μ-methoxo-μ-phenoxo bridges, magnetic ground state, and single-molecule magnetic behavior. Chem Eur J 20 (27):8410–8420. doi:10.1002/chem.201402392

  25. Shen S, Xue S, Lin S-Y et al (2013) A triangular dysprosium with asymmetric central caps featuring ferromagnetic coupling and single-molecule magnet behaviour. Dalton Trans 42(29):10413–10416. doi:10.1039/c3dt51235e

    Article  Google Scholar 

  26. Morita T, Katoh K, Breedlove BK et al (2013) Controlling the dipole-dipole interactions between Terbium(III) phthalocyaninato triple-decker moieties through spatial control using a fused Phthalocyaninato ligand. Inorg Chem 52(23):13555–13561. doi:10.1021/ic4020459

    Article  Google Scholar 

  27. Guo Y-N, Xu G-F, Wernsdorfer W et al (2011) Strong axiality and ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. J Am Chem Soc 133(31):11948–11951. doi:10.1021/ja205035g

    Article  Google Scholar 

  28. Guo Y-N, Chen X-H, Xue S et al (2012) Molecular assembly and magnetic dynamics of two novel Dy6 and Dy8 aggregates. Inorg Chem 51(7):4035–4042. doi:10.1021/ic202170z

    Article  Google Scholar 

  29. Blagg RJ, Muryn CA, McInnes EJL et al (2011) Single pyramid magnets: Dy5 pyramids with slow magnetic relaxation to 40 K. Angew Chem Int Ed 50(29):6530–6533. doi:10.1002/anie.201101932

    Article  Google Scholar 

  30. Woodruff DN, Tuna F, Bodensteiner M et al (2013) Single-molecule magnetism in tetrametallic terbium and dysprosium thiolate cages. Organometallics 32(5):1224–1229. doi:10.1021/om3010096

    Article  Google Scholar 

  31. Woodruff DN, Winpenny REP, Layfield RA (2013) Lanthanide single-molecule magnets. Chem Rev 113:5110–5148. doi:10.1021/cr400018q

    Article  Google Scholar 

  32. Zhang P, Guo Y-N, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: structural overview and synthetic strategies. Coord Chem Rev 257(11–12):1728–1763. doi:10.1016/j.ccr.2013.01.012

    Article  Google Scholar 

  33. Lin P-H, Burchell TJ, Ungur L et al (2009) A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier. Angew Chem Int Ed 48(50):9489–9492. doi:10.1002/anie.200903199

    Article  Google Scholar 

  34. Zhang P, Zhang L, Tang J (2013) Hydrazone-based dysprosium single molecule magnets curr. Inorg Chem 3(2):101–111. doi:10.2174/1877944111303020005

    Google Scholar 

  35. Yamashita A, Watanabe A, Akine S et al. (2011) Wheel-shaped \({\text{Er}}^{\text{III}} {\text{Zn}}^{\text{II}}_{ 3}\) single-molecule magnet: a macrocyclic approach to designing magnetic anisotropy. Angew Chem Int Ed 50 (17):4016–4019. doi:10.1002/anie.201008180

  36. Lin S-Y, Guo Y-N, Guo Y et al (2012) Macrocyclic ligand encapsulating dysprosium triangles: axial ligands perturbed magnetic dynamics. Chem Commun 48(55):6924–6926. doi:10.1039/C2CC32827E

    Article  Google Scholar 

  37. Hewitt IJ, Lan Y, Anson CE et al (2009) Opening up a dysprosium triangle by ligand oximation. Chem Commun 44:6765–6767. doi:10.1039/B908194A

    Article  Google Scholar 

  38. Guo F-S, Liu J-L, Leng J-D et al (2011) Pure trinuclear 4f single-molecule magnets: synthesis, structures, magnetism and ab initio investigation. Chem Eur J 17(8):2458–2466. doi:10.1002/chem.201002296

    Article  Google Scholar 

  39. Liu C-S, Du M, Sanudo EC et al (2011) A luminescent linear trinuclear DyIII complex exhibiting slow magnetic relaxation of single ion origin. Dalton Trans 40(37):9366–9369. doi:10.1039/C1DT11039J

    Article  Google Scholar 

  40. Chilton NF, Deacon GB, Gazukin O et al (2014) Structure, magnetic behavior, and anisotropy of homoleptic trinuclear lanthanoid 8-quinolinolate complexes. Inorg Chem 53(5):2528–2534. doi:10.1021/ic402672m

    Article  Google Scholar 

  41. Zheng Y-Z, Lan Y, Anson CE et al (2008) Anion-perturbed magnetic slow relaxation in planar Dy4 clusters. Inorg Chem 47(23):10813–10815. doi:10.1021/ic8016722

    Article  Google Scholar 

  42. Yan P-F, Lin P-H, Habib F et al (2011) Planar tetranuclear Dy(III) single-molecule magnet and its Sm(III), Gd(III), and Tb(III) analogues encapsulated by Salen-Type and β-diketonate ligands. Inorg Chem 50(15):7059–7065. doi:10.1021/ic200566y

    Article  Google Scholar 

  43. Langley SK, Chilton NF, Gass IA et al (2011) Planar tetranuclear lanthanide clusters with the Dy4 analogue displaying slow magnetic relaxation. Dalton Trans 40(47):12656–12659. doi:10.1039/C1DT11750E

    Article  Google Scholar 

  44. Abbas G, Lan Y, Kostakis GE et al. (2010) Series of isostructural planar lanthanide complexes [Ln III4 3-OH)2(mdeaH)2(piv)8] with single molecule magnet behavior for the Dy4 analogue. Inorg Chem 49 (17):8067–8072. doi:10.1021/ic1011605

  45. Liu C-M, Zhang D-Q, Zhu D-B (2013) A single-molecule magnet featuring a parallelogram [Dy4(OCH2-)4] core and two magnetic relaxation processes. Dalton Trans 42(41):14813–14818. doi:10.1039/c3dt51785c

    Article  MathSciNet  Google Scholar 

  46. Das S, Dey A, Biswas S et al (2014) Hydroxide-free cubane-shaped tetranuclear [Ln4] complexes. Inorg Chem 53(7):3417–3426. doi:10.1021/ic402827b

    Article  Google Scholar 

  47. Ke H, Gamez P, Zhao L et al (2010) Magnetic properties of dysprosium cubanes dictated by the M–O–M angles of the [Dy43-OH)4] Core. Inorg Chem 49(16):7549–7557. doi:10.1021/ic101057e

    Article  Google Scholar 

  48. Gao YJ, Xu GF, Zhao L et al (2009) Observation of slow magnetic relaxation in discrete dysprosium cubane. Inorg Chem 48(24):11495–11497. doi:10.1021/ic901806g

    Article  Google Scholar 

  49. Peng J-B, Ren Y-P, Kong X-J et al (2011) A series of di-, tri- and tetranuclear lanthanide clusters with slow magnetic relaxation for Dy2 and Dy4. Cryst Eng Comm 13(6):2084–2090. doi:10.1039/C0CE00589D

    Article  Google Scholar 

  50. Lin P-H, Korobkov I, Wernsdorfer W et al (2011) A rare μ4-O centred Dy4 tetrahedron with coordination-Induced local chirality and single-molecule magnet behaviour. Eur J Inorg Chem 10:1535–1539. doi:10.1002/ejic.201100038

    Article  Google Scholar 

  51. Zhang L, Zhang P, Zhao L et al. (2013) Two locally chiral dysprosium compounds with salen-type ligands that show slow magnetic relaxation behavior. Eur J Inorg Chem 2013 (8):1351–1357. doi:10.1002/ejic.201201336

  52. Ke H, Xu G-F, Guo Y-N et al (2010) A linear tetranuclear dysprosium(III) compound showing single-molecule magnet behaviour. Chem Commun 46(33):6057–6059. doi:10.1039/C0CC01067G

    Article  Google Scholar 

  53. Lin S-Y, Zhao L, Ke H et al (2012) Steric hindrances create a discrete linear Dy4 complex exhibiting SMM behaviour. Dalton Trans 41(11):3248–3252. doi:10.1039/C2DT11539E

    Article  Google Scholar 

  54. Chen Y-H, Tsai Y-F, Lee G-H et al (2012) The synthesis, structure, magnetic and luminescent properties of a new tetranuclear dysprosium (III) cluster. J Solid State Chem 185:166–171. doi:10.1016/j.jssc.2011.10.033

    Article  ADS  Google Scholar 

  55. Koo BH, Lim KS, Ryu DW et al (2013) Synthesis, structures and magnetic characterizations of isostructural tetranuclear Ln4 clusters (Ln = Dy, Ho, and Eu). Dalton Trans 42(19):7204–7209. doi:10.1039/c3dt00056g

    Article  Google Scholar 

  56. Yang P-P, Gao X-F, Song H-B et al (2010) Slow magnetic relaxation in novel Dy4 and Dy8 compounds. Inorg Chem 50(3):720–722. doi:10.1021/ic1021643

    Article  Google Scholar 

  57. Goura J, Walsh JPS, Tuna F et al (2014) Tetranuclear lanthanide(III) complexes in a seesaw geometry: synthesis, structure, and magnetism. Inorg Chem 53(7):3385–3391. doi:10.1021/ic4027915

    Article  Google Scholar 

  58. Zou H-H, Wang R, Chen Z-L et al (2014) Series of edge-sharing bi-triangle Ln4 clusters with a μ4-NO -3 bridge: syntheses, structures, luminescence, and the SMM behavior of the Dy4 analogue. Dalton Trans 43(6):2581–2587. doi:10.1039/c3dt52316k

    Article  Google Scholar 

  59. Sharples JW, Zheng Y-Z, Tuna F et al (2011) Lanthanide discs chill well and relax slowly. Chem Commun 47(27):7650–7652. doi:10.1039/C1CC12252E

    Article  Google Scholar 

  60. Bi Y, Xu G, Liao W et al (2012) Calixarene-supported hexadysprosium cluster showing single molecule magnet behavior. Sci China Chem 55(6):967–972. doi:10.1007/s11426-012-4570-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkui Tang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, J., Zhang, P. (2015). Single-Molecule Toroics and Multinuclear Lanthanide Single-Molecule Magnets. In: Lanthanide Single Molecule Magnets. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46999-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46999-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46998-9

  • Online ISBN: 978-3-662-46999-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics