Skip to main content

3DOM LSMO-Supported Ag NPs for Catalytic Combustion of Methane

  • Chapter
  • First Online:
Book cover Methane Combustion over Lanthanum-based Perovskite Mixed Oxides

Part of the book series: Springer Theses ((Springer Theses))

  • 726 Accesses

Abstract

Perovskite-type oxides (ABO3) have attracted a lot of attention in the last few decades [1–7]. The major drawback of traditional ABO3 is low in surface area, which limits its catalytic application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yi T, Gao S, Qi X, et al. Low temperature synthesis and magnetism of La0.75Ca0.25MnO3 nanoparticles. J Phys Chem Solids. 2000;61(9):1407–13.

    Article  CAS  Google Scholar 

  2. Tan R, Zhu Y, Feng J, Ji S, Cao L. Preparation of nanosized LaCo x Mn1−x O3 perovskite oxide using amorphous heteronuclear complex as a precursor. J Alloy Compd. 2002;337(1):282–8.

    Article  CAS  Google Scholar 

  3. Zhu Y, Wang H, Tan R, Cao L. Preparation of nanosized La1−x Sr x CoO3 via La1−x Sr x Co(DTPA)·6H2O amorphous complex precursor. J Alloy Compd. 2003;352(1):134–9.

    Article  CAS  Google Scholar 

  4. He Y, Zhu Y, Wu N. Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance. J Solid State Chem. 2004;177(11):3868–72.

    Article  CAS  Google Scholar 

  5. Tian Y, He Y, Zhu Y. Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods. Mater Chem Phys. 2004;87(1):87–90.

    Article  CAS  Google Scholar 

  6. Teng F, Han W, Liang S, Gaugeu B, Zong R, Zhu Y. Catalytic behavior of hydrothermally synthesized La0.5Sr0.5MnO3 single-crystal cubes in the oxidation of CO and CH4. J Catal. 2007;250(1):1–11.

    Article  CAS  Google Scholar 

  7. Liang S, Xu T, Teng F, Zong R, Zhu Y. The high activity and stability of La0.5Ba0.5MnO3 nanocubes in the oxidation of CO and CH4. Appl Catal B. 2010;96(3):267–75.

    Article  CAS  Google Scholar 

  8. Dokko K, Akutagawa N, Isshiki Y, Hoshina K, Kanamura K. Preparation of three dimensionally ordered macroporous Li0.35La0.55TiO3 by colloidal crystal templating process. Solid State Ionics. 2005;176(31):2345–8.

    Article  CAS  Google Scholar 

  9. Ding S, Qian W, Tan Y, Wang Y. In-situ incorporation of gold nanoparticles of desired sizes into three-dimensional macroporous matrixes. Langmuir. 2006;22(17):7105–8.

    Article  CAS  Google Scholar 

  10. Huang J, C-a Tao, An Q, et al. 3D-ordered macroporous poly(ionic liquid) films as multifunctional materials. Chem Commun. 2010;46(6):967–9.

    Article  CAS  Google Scholar 

  11. Kamio E, Yonemura S, Ono T, Yoshizawa H. Microcapsules with macroholes prepared by the competitive adsorption of surfactants on emulsion droplet surfaces. Langmuir. 2008;24(23):13287–98.

    Article  CAS  Google Scholar 

  12. Kotobuki M, Okada N, Kanamura K. Design of a micro-pattern structure for a three dimensionally macroporous Sn-Ni alloy anode with high areal capacity. Chem Commun. 2011;47(21):6144–6.

    Article  CAS  Google Scholar 

  13. Dai H, Bell AT, Iglesia E. Effects of molybdena on the catalytic properties of vanadia domains supported on alumina for oxidative dehydrogenation of propane. J Catal. 2004;221(2):491–9.

    Article  CAS  Google Scholar 

  14. Dai H, He H, Li P, Gao L, Au C-T. The relationship of structural defect–redox property–catalytic performance of perovskites and their related compounds for CO and NOx removal. Catal Today. 2004;90(3):231–44.

    Article  CAS  Google Scholar 

  15. Dai HX, Au CT, Chan Y, Hui KC, Leung YL. Halide-doped perovskite-type AMn1−x Cu x O3−δ (A = La0.8Ba0.2) catalysts for ethane-selective oxidation to ethene. Appl Catal A. 2001;213(1):91–102.

    Article  CAS  Google Scholar 

  16. Dai HX, He H, Au CT. Ethane oxidative dehydrogenation over halogenated Bi2Sr2CaCu2O8-delta catalysts. Ind Eng Chem Res. 2002;41(1):37–45.

    Article  CAS  Google Scholar 

  17. Choudhary VR, Uphade BS, Pataskar SG, Thite GA. Low-temperature total oxidation of methane over Ag-doped LaMO3 perovskite oxides. Chem Commun. 1996;9:1021–2.

    Article  Google Scholar 

  18. Choudhary VR, Uphade BS, Pataskar SG. Low temperature complete combustion of methane over Ag-doped LaFeO3 and LaFe0.5Co0.5O3 perovskite oxide catalysts. Fuel. 1999;78(8):919–21.

    Article  CAS  Google Scholar 

  19. Arandiyan H, Chang H, Liu C, Peng Y, Li J. Dextrose-aided hydrothermal preparation with large surface area on 1D single-crystalline perovskite La0.5Sr0.5CoO3 nanowires without template: highly catalytic activity for methane combustion. J Mol Catal A: Chem. 2013;378(1):299–306.

    Article  CAS  Google Scholar 

  20. Choudhary VR, Mondal KC. CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst. Appl Energy. 2006;83(9):1024–32.

    Article  CAS  Google Scholar 

  21. Gardner SD, Hoflund GB, Schryer DR, Schryer J, Upchurch BT, Kielin EJ. Catalytic behavior of noble metal/reducible oxide materials for low-temperature CO oxidation. 1. Comparison of catalyst performance. Langmuir. 1991;7(10):2135–9.

    Article  CAS  Google Scholar 

  22. Song KS, Kang SK, Kim SD. Preparation and characterization of Ag/MnOx/perovskite catalysts for CO oxidation. Catal Lett. 1997;49(1–2):65–8.

    Article  CAS  Google Scholar 

  23. Li X, Dai H, Deng J, et al. In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM La0.6Sr0.4CoO3 for toluene combustion. Appl Catal A. 2013;458(1):11–20.

    Article  CAS  Google Scholar 

  24. Wang Y, Dai H, Deng J, et al. 3DOM InVO4-supported chromia with good performance for the visible-light-driven photodegradation of rhodamine B. Solid State Sci. 2013;24(1):62–70.

    Article  Google Scholar 

  25. Wang Y, Dai H, Deng J, et al. Three-dimensionally ordered macroporous InVO4: fabrication and excellent visible-light-driven photocatalytic performance for methylene blue degradation. Chem Eng J. 2013;226(1):87–94.

    CAS  Google Scholar 

  26. Liu Y, Dai H, Deng J, et al. PMMA-templating generation and high catalytic performance of chain-like ordered macroporous LaMnO3 supported gold nanocatalysts for the oxidation of carbon monoxide and toluene. Appl Catal B. 2013;140(1):317–26.

    Article  Google Scholar 

  27. Li X, Dai H, Deng J, et al. Au/3DOM LaCoO3: high-performance catalysts for the oxidation of carbon monoxide and toluene. Chem Eng J. 2013;228(1):965–75.

    Article  CAS  Google Scholar 

  28. Liu Y, Dai H, Deng J, et al. Au/3DOM La0.6Sr0.4MnO3: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. J Catal. 2013;305(1):146–53.

    Article  CAS  Google Scholar 

  29. Liu Y, Dai H, Du Y, et al. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. J Catal. 2012;287(1):149–60.

    Article  CAS  Google Scholar 

  30. Yuan J, Dai H, Zhang L, et al. PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion. Catal Today. 2011;175(1):209–15.

    Article  CAS  Google Scholar 

  31. Arandiyan H, Dai H, Deng J, et al. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: active catalysts for the combustion of methane. J Catal. 2013;307(1):327–39.

    Article  CAS  Google Scholar 

  32. Kucharczyk B, Tylus W. Partial substitution of lanthanum with silver in the LaMnO3 perovskite: effect of the modification on the activity of monolithic catalysts in the reactions of methane and carbon oxide oxidation. Appl Catal A. 2008;335(1):28–36.

    Article  CAS  Google Scholar 

  33. Ye SL, Song WH, Dai JM, et al. Effect of Ag substitution on the transport property and magnetoresistance of LaMnO3. J Magn Magn Mater. 2002;248(1):26–33.

    Article  CAS  Google Scholar 

  34. Hien NT, Thuy NP. Preparation and magneto-caloric effect of La1−x Ag x MnO3 (x = 0.10–0.30) perovskite compounds. Phys B. 2002;319(1):168–73.

    Article  CAS  Google Scholar 

  35. Battabyal M, Dey TK. Low temperature electrical transport in Ag substituted LaMnO3 polycrystalline pellets prepared by a pyrophoric method. Solid State Commun. 2004;131(5):337–42.

    Article  CAS  Google Scholar 

  36. Ueda W, Sadakane M, Ogihara H. Nano-structuring of complex metal oxides for catalytic oxidation. Catal Today. 2008;132(1):2–8.

    Article  CAS  Google Scholar 

  37. Caizer C, Stefanescu M. Magnetic characterization of nanocrystalline Ni-Zn ferrite powder prepared by the glyoxylate precursor method. J Phys D Appl Phys. 2002;35(23):3035–40.

    Article  CAS  Google Scholar 

  38. Sadakane M, Horiuchi T, Kato N, Takahashi C, Ueda W. Facile preparation of three-dimensionally ordered macroporous alumina, iron oxide, chromium oxide, manganese oxide, and their mixed-metal oxides with high porosity. Chem Mater. 2007;19(23):5779–85.

    Article  CAS  Google Scholar 

  39. Park JB, Graciani J, Evans J, et al. High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level. Proc Natl Acad Sci USA. 2009;106(13):4975–80.

    Article  CAS  Google Scholar 

  40. Vayssilov GN, Lykhach Y, Migani A, et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat Mater. 2011;10(4):310–5.

    Article  CAS  Google Scholar 

  41. Ponce S, Peña MA, Fierro JLG. Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Appl Catal B. 2000;24(3):193–205.

    Article  CAS  Google Scholar 

  42. Tang W, Hu Z, Wang M, Stucky GD, Metiu H, McFarland EW. Methane complete and partial oxidation catalyzed by Pt-doped CeO2. J Catal. 2010;273(2):125–37.

    Article  CAS  Google Scholar 

  43. Machocki A, Ioannides T, Stasinska B, et al. Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. J Catal. 2004;227(2):282–96.

    Article  CAS  Google Scholar 

  44. Svensson EE, Nassos S, Boutonnet M, Järås SG. Microemulsion synthesis of MgO-supported LaMnO3 for catalytic combustion of methane. Catal Today. 2006;117(4):484–90.

    Article  CAS  Google Scholar 

  45. Wang W, Zhang H-B, Lin G-D, Xiong Z-T. Study of Ag/La0.6Sr0.4MnO3 catalysts for complete oxidation of methanol and ethanol at low concentrations. Appl Catal B: Environ. 2000;24(3):219–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Arandiyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arandiyan, H. (2015). 3DOM LSMO-Supported Ag NPs for Catalytic Combustion of Methane. In: Methane Combustion over Lanthanum-based Perovskite Mixed Oxides. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46991-0_5

Download citation

Publish with us

Policies and ethics