Skip to main content

3DOM LSMO with High Surface Areas for the Combustion of Methane

  • Chapter
  • First Online:
Methane Combustion over Lanthanum-based Perovskite Mixed Oxides

Part of the book series: Springer Theses ((Springer Theses))

  • 721 Accesses

Abstract

Catalytic combustion of CH4 is significant for power generation and environment protection. Perovskite-type oxide (ABO3), A is typically an alkaline earth, and B is a transition-metal ion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auer R, Alifanti M, Delmon B, Thyrion FC. Catalytic combustion of methane in the presence of organic and inorganic compounds over La0.9Ce0.1CoO3 catalyst. Appl Catal B. 2002;39(4):311–8.

    Article  CAS  Google Scholar 

  2. Zhong Z, Chen K, Ji Y, Yan Q. Methane combustion over B-site partially substituted perovskite-type LaFeO3 prepared by sol–gel method. Appl Catal A. 1997;156(1):29–41.

    Article  CAS  Google Scholar 

  3. Machida M, Eguchi K, Arai H. Effect of structural modification on the catalytic property of Mn-substituted hexaaluminates. J Catal. 1990;123(2):477–85.

    Article  CAS  Google Scholar 

  4. Duprat AM, Alphonse P, Sarda C, Rousset A, Gillot B. Nonstoichiometry-activity relationship in perovskite-like manganites. Mater Chem Phys. 1994;37(1):76–81.

    Article  CAS  Google Scholar 

  5. Niu J, Deng J, Liu W, et al. Nanosized perovskite-type oxides La1−x Sr x MO3−δ for the catalytic removal of ethylacetate. Catal Today. 2007;126(3):420–9.

    Article  CAS  Google Scholar 

  6. Zhang G, Wang D, Möhwald H. Patterning microsphere surfaces by templating colloidal crystals. Nano Lett. 2004;5(1):143–6.

    Article  Google Scholar 

  7. Kakihana M. Invited review “sol–gel” preparation of high temperature superconducting oxides. J Sol–Gel Sci Technol. 1996;6(1):7–55.

    Article  CAS  Google Scholar 

  8. Rivas I, Alvarez J, Pietri E, Pérez-Zurita MJ, Goldwasser MR. Perovskite-type oxides in methane dry reforming: Effect of their incorporation into a mesoporous SBA-15 silica-host. Catal Today. 2010;149(3):388–93.

    Article  CAS  Google Scholar 

  9. Liang JJ, Weng H-S. Catalytic properties of lanthanum strontium transition metal oxides (La1−x Sr x BO3; B = manganese, iron, cobalt, nickel) for toluene oxidation. Ind Eng Chem Res. 1993;32(11):2563–72.

    Article  CAS  Google Scholar 

  10. Kakihana M. Invited review “sol–gel” preparation of high temperature superconducting oxides. J Sol–Gel Sci Technol. 1996;6(1):7–55.

    Article  CAS  Google Scholar 

  11. Zheng J, Liu J, Zhao Z, Xu J, Duan A, Jiang G. The synthesis and catalytic performances of three-dimensionally ordered macroporous perovskite-type LaMn1−x Fe x O3 complex oxide catalysts with different pore diameters for diesel soot combustion. Catal Today. 2012;191(1):146–53.

    Article  CAS  Google Scholar 

  12. Sadakane M, Kato R, Murayama T, Ueda W. Preparation and formation mechanism of three-dimensionally ordered macroporous (3DOM) MgO, MgSO4, CaCO3, and SrCO3, and photonic stop band properties of 3DOM CaCO3. J Solid State Chem. 2011;184(8):2299–305.

    Article  CAS  Google Scholar 

  13. Sadakane M, Sasaki K, Kunioku H, Ohtani B, Ueda W, Abe R. Preparation of nano-structured crystalline tungsten (vi) oxide and enhanced photocatalytic activity for decomposition of organic compounds under visible light irradiation. Chem Commun. 2008;1(48):6552–4.

    Article  Google Scholar 

  14. Sadakane M, Sasaki K, Nakamura H, Yamamoto T, Ninomiya W, Ueda W. Important property of polymer spheres for the preparation of three-dimensionally ordered macroporous (3DOM) metal oxides by the ethylene glycol method: the glass-transition temperature. Langmuir. 2012;28(51):17766–70.

    Article  CAS  Google Scholar 

  15. Ji K, Dai H, Deng J, et al. Three-dimensionally ordered macroporous Eu0.6Sr0.4FeO3 supported cobalt oxides: highly active nanocatalysts for the combustion of toluene. Appl Catal B. 2013;129(1):539–48.

    Article  CAS  Google Scholar 

  16. Liu Y, Dai H, Deng J, Zhang L, Au CT. Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation. Nanoscale. 2012;4(7):2317–25.

    Article  CAS  Google Scholar 

  17. Li H, Zhang L, Dai H, He H. Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria–zirconia solid solutions with crystalline mesoporous walls. Inorg Chem. 2009;48(10):4421–34.

    Article  CAS  Google Scholar 

  18. Hornés A, Gamarra D, Munuera G, Conesa JC, Martínez-Arias A. Catalytic properties of monometallic copper and bimetallic copper-nickel systems combined with ceria and Ce-X mixed oxides applicable as SOFC anodes for direct oxidation of methane. J Power Sources. 2007;169(1):9–16.

    Article  Google Scholar 

  19. Hornés A, Gamarra D, Munuera G, et al. Structural, catalytic/redox and electrical characterization of systems combining Cu–Ni with CeO2 or Ce1−x M x O2−δ (M = Gd or Tb) for direct methane oxidation. J Power Sources. 2009;192(1):70–7.

    Article  Google Scholar 

  20. Ruckenstein E, Hu YH. Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts. Appl Catal A. 1995;133(1):149–61.

    Article  CAS  Google Scholar 

  21. Deng J, Zhang L, Dai H, He H, Au CT. Hydrothermally fabricated single-crystalline strontium-substituted lanthanum manganite microcubes for the catalytic combustion of toluene. J Mol Catal A: Chem. 2009;299(1):60–7.

    Article  CAS  Google Scholar 

  22. Di Castro V, Polzonetti G. XPS study of MnO oxidation. J Electron Spectrosc Relat Phenom. 1989;48(1):117–23.

    Article  Google Scholar 

  23. Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z. Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene. Appl Catal B. 2012;119(1):20–31.

    Article  Google Scholar 

  24. Fierro JLG, Tascón JMD, Tejuca LG. Physicochemical properties of LaMnO3: reducibility and kinetics of O2 adsorption. J Catal. 1984;89(2):209–16.

    Article  CAS  Google Scholar 

  25. Zhang L, Zhang Y, Dai H, Deng J, Wei L, He H. Hydrothermal synthesis and catalytic performance of single-crystalline La2−x Sr x CuO4 for methane oxidation. Catal Today. 2010;153(3):143–9.

    Article  CAS  Google Scholar 

  26. Bulgan G, Teng F, Liang SH, Yao WQ, Zhu YF. Effect of Cu doping on the structure and catalytic activity of LaMnO3 catalyst. Wuli Huaxue Xuebao/Acta Phys Chim Sin. 2007;23(9):1387–92.

    CAS  Google Scholar 

  27. de Araujo GC, Lima S, Rangel MdC, Parola VL, Peña MA, García Fierro JL. Characterization of precursors and reactivity of LaNi1−x Co x O3 for the partial oxidation of methane. Catal Today. 2005;107(1):906–12.

    Article  Google Scholar 

  28. Svensson EE, Nassos S, Boutonnet M, Järås SG. Microemulsion synthesis of MgO-supported LaMnO3 for catalytic combustion of methane. Catal Today. 2006;117(4):484–90.

    Article  CAS  Google Scholar 

  29. Araya P, Guerrero S, Robertson J, Gracia FJ. Methane combustion over Pd/SiO2 catalysts with different degrees of hydrophobicity. Appl Catal A. 2005;283(1):225–33.

    Article  CAS  Google Scholar 

  30. Liang S, Teng F, Bulgan G, Zhu Y. Effect of Jahn—Teller distortion in la0.5Sr0.5MnO3 cubes and nanoparticles on the catalytic oxidation of CO and CH4. J Phys Chem C. 2007;111(45):16742–9.

    Article  CAS  Google Scholar 

  31. Florea M, Alifanti M, Parvulescu VI, et al. Total oxidation of toluene on ferrite-type catalysts. Catal Today. 2009;141(3):361–6.

    Article  CAS  Google Scholar 

  32. Masui T, Imadzu H, Matsuyama N, Imanaka N. Total oxidation of toluene on Pt/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts prepared in the presence of polyvinyl pyrrolidone. J Hazard Mater. 2010;176(1):1106–9.

    Article  CAS  Google Scholar 

  33. Saqer SM, Kondarides DI, Verykios XE. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3. Appl Catal B. 2011;103(3):275–86.

    Article  CAS  Google Scholar 

  34. Florea M, Alifanti M, Parvulescu VI, et al. Total oxidation of toluene on ferrite-type catalysts. Catal Today. 2009;141(3):361–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Arandiyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arandiyan, H. (2015). 3DOM LSMO with High Surface Areas for the Combustion of Methane. In: Methane Combustion over Lanthanum-based Perovskite Mixed Oxides. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46991-0_4

Download citation

Publish with us

Policies and ethics