Skip to main content

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

Abstract

Analysis of high-temperature behavior of engineering structures, or in a wider scope, solids (deformable bodies), is a multidisciplinary problem. It is of particular importance for numerous industrial applications but is also of great academic interest as a branch of continuum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade EDC (1910) On the viscous flow of metals and allied phenomena. Proc R Soc Ser A 84:A567

    Google Scholar 

  • Bailey RW (1935) The utilization of creep test data in engineering design. Proc Inst Mech Eng 131(1):131–349

    Google Scholar 

  • Balashov BF, Kozlov LA (1981) Methods of fatigue tests and results processing. In: Birger IA, Balashov BF (eds) Constructive strength of materials and details of gas-turbine engines. Mashinostroenie, Moscow (in Russian)

    Google Scholar 

  • Birger IA (1957) Calculation of nonuniformly heated rods with variable elastic parameters. Trudy Instituta im. Baranova, No. 298, Oborongiz, Moscow (in Russian)

    Google Scholar 

  • Birger IA, Dem’yanushko IV (1968) Theory of plasticity at nonisothermal loading. Ingenerny J Mechanika Tverdova Tela 6:70–77 (in Russian)

    Google Scholar 

  • Boley BA, Weiner JH (1960) Theory of thermal stresses. Wiley, New York

    MATH  Google Scholar 

  • Duhamel JMC (1837) Deuxième memoire sur les phénomènes thermo-mécaniques. J de l’Ecole Polytechnique 15(25):1–57

    Google Scholar 

  • Dul’nev RA (1979) Experimental methods of research of thermo-fatigue characteristics. In: Constructive strength of materials and details of gaseous-turbine engines. CIAM, Proc. No. 835, Moscow, pp 497–516 (in Russian)

    Google Scholar 

  • Gatewood BE (1957) Thermal stresses with applications to airplanes, missiles, turbines and nuclear reactors. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  • Il’ushin AA (1943) Some problems of the theory of plastic deformations. J Prikladnaya matematika i mekhanika YII(4):245–272 (in Russian)

    Google Scholar 

  • Il’ushin AA (1963) Plasticity. Foundation of general mathematical theory. AN SSSR, Moscow (in Russian)

    Google Scholar 

  • Kachanov LM (1958) About failure time in creep conditions. Izv.AN SSSR, ONT, No. 8 (in Russian)

    Google Scholar 

  • Lebedev NN (1934) Thermal stresses in the theory of elasticity, PMM, vol 2(1). Moscow (in Russian)

    Google Scholar 

  • Lebedev NN (1937) Thermal stresses in the theory of elasticity, ONTI. Leningrad-Moskva (in Russian)

    Google Scholar 

  • Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lemaitre J, Chaboche JL (2004) Mecanique des materiaux solides, 2nd edn. Dunod, Paris

    Google Scholar 

  • Malinin NN (1975) Applied theory of plasticity and creep, 2nd edn. Mashinostroenie, Moscow (in Russian)

    Google Scholar 

  • Manson SS (1966) Thermal stress and low-cycle fatigue. McGraw-Hill Company, New York

    Google Scholar 

  • Melan E, Parkus H (1953) Wärmespannungen Infolge Stationäre Temperatur-felder. Springer, Wien

    Google Scholar 

  • Murakami S (2012) Continuum damage mechanics. Springer, Berlin

    Google Scholar 

  • Noll W (1958) A mathematical theory of the mechanical behavior of continuous media. Arch Rat Mech Anal 2:197–226

    Article  MATH  Google Scholar 

  • Pisarenko GS, Novikov NV, Andreev LP et al (1969) About problem of investigation of metal mechanical characteristics at low temperatures under vacuum conditions. In: Thermostrength of materials and construction members, vol 5. Naukova Dumka, Kiev, pp 440–448 (in Russian)

    Google Scholar 

  • Prager W (1937) Mechanique des solides isotropes au dela du domaine elastique. Memorial de Sciences Math, vol LXXXVII

    Google Scholar 

  • Rabotnov YN (1966) Creep of construction elements. Physmatgiz, Moscow. Trans: (1969) Creep problems in structure members. North Holland, Amsterdam (in Russian)

    Google Scholar 

  • Sedov LI (1973) Mechanics of continuum medium, vol 1, 2, 2nd edn. Nauka, Moscow (in Russian)

    Google Scholar 

  • Serensen SV, Kogaev VP, Shneyderovich RM (1963) Load-capacity and strength calculation of machine structures, 1st edn (3rd edn, 1975). Mashinostroenie, Moscow (in Russian)

    Google Scholar 

  • Shorr BF (1958) Effect of nonuniform heating under creep conditions on the change in a stress state. Dokl Akad Nauk SSSR 123(5):809–812 (in Russian)

    Google Scholar 

  • Temis YM (1994) Applied solution methods of thermal plasticity problems. In: Frolov KV et al (eds) “Machinery, Encyclopedia”. In: Kolesnikov KS et al (eds) Dynamics and machine strength, vol 1–3(B.1). Mashinostroenie, Moscow, pp 231–236 (in Russian)

    Google Scholar 

  • Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • Touloukian YS et al (eds) (1975) Thermophysical properties of matter, vol 12. Thermal expansion. Plenum, NY, Washington

    Google Scholar 

  • Troshchenko VT, Lebedev AA, Strijalo VA, Stepanov GV, Krivenjuk VV (2000) Mechanical behavior of materials at different load terms. Logos, Kiev (in Russian)

    Google Scholar 

  • Valanis KC (1971) A theory of viscoplasticity without a yield surface. Arch Mech Stosow 23(4):517–551

    MATH  MathSciNet  Google Scholar 

  • Volkov IA, Korotkikh YG (2008) State equations of viscoelasticplastic media with damages. Phyzmatgiz, Moscow (in Russian)

    Google Scholar 

  • Wilshire B, Evans RW (1994) Acquisition and analysis of creep data. J Strain Anal Eng Des 29(3):159–165

    Google Scholar 

  • Zhou X (2008) Publications on thermal stresses. J Therm Stresses, 31:663–664 (Taylor & Francis)

    Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Zubchaninov VG, Okhlopkov NL, Garanikov VV (2004) Experimental plasticity, B.2, Processes of combine loading. Tver’s State Technical University, Tver (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris F. Shorr .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shorr, B.F. (2015). Introduction. In: Thermal Integrity in Mechanics and Engineering. Foundations of Engineering Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46968-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46968-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46967-5

  • Online ISBN: 978-3-662-46968-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics