Skip to main content

Effect of Geometry on the Adhesive Behavior of Bio-inspired Fibrils

  • Chapter
  • First Online:
Bio-inspired Studies on Adhesion of a Thin Film on a Rigid Substrate

Part of the book series: Springer Theses ((Springer Theses))

  • 554 Accesses

Abstract

Inspired by the special climbing ability of geckos and insects, the effects of geometries, including the end-shape and size, on the adhesion features of bio-inspired fibrils, are investigated. It is found that the adhesion force of a mushroom-shaped fibril in perfect contact with a rigid substrate decreases with the increase of peeling angle, but it will increase with an increasing flange thickness at a determined peeling angle. With the same contact length, the mushroom-shaped fibril can achieve much larger adhesion force than the cylindrical or the spatular one due to a larger effective region of the cohesive zone. The effect of the shaft width of the mushroomed-shaped fibril on the adhesion force with and without interfacial defects is also considered, and the results are further compared qualitatively with the experimental ones. A critical contact length for the mushroom-shaped fibril is further found, above which the adhesion force attains the maximum. For a multi-fibril structure, the phenomenon of almost equal load sharing for each fibril is verified numerically, which is consistent with the existing experimental observation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spolenak R, Gorb S, Gao HJ, Arzt E (2005) Effects of contact shape on the scaling of biological attachments. Proc R Soc London Ser A-Math Phys Eng Sci 461(2054):305–319

    Article  Google Scholar 

  2. Varenberg M, Peressadko A, Gorb S, Arzt E (2006) Effect of real contact geometry on adhesion. Appl Phys Lett 89(12):121905

    Article  Google Scholar 

  3. Spuskanyuk AV, McMeeking RM, Deshpande VS, Arzt E (2008) The effect of shape on the adhesion of fibrillar surfaces. Acta Biomater 4(6):1669–1676

    Article  Google Scholar 

  4. del Campo A, Greiner C, Arzt E (2007) Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23(20):10235–10243

    Article  Google Scholar 

  5. Varenberg M, Pugno NM, Gorb SN (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6(14):3269–3272

    Article  Google Scholar 

  6. Gorb S, Varenberg M, Peressadko A, Tuma J (2007) Biomimetic mushroom-shaped fibrillar adhesive microstructure. J R Soc Interface 4(13):271–275

    Article  Google Scholar 

  7. Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci USA 100(19):10603–10606

    Article  Google Scholar 

  8. Tian Y, Pesika N, Zeng HB, Rosenberg K, Zhao BX, McGuiggan P, Autumn K, Israelachvili J (2006) Adhesion and friction in gecko toe attachment and detachment. Proc Natl Acad Sci USA 103(51):19320–19325

    Article  Google Scholar 

  9. Varenberg M, Gorb S (2007) Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J R Soc Interface 4(15):721–725

    Article  Google Scholar 

  10. Varenberg M, Gorb S (2008) Close-up of mushroom-shaped fibrillar adhesive microstructure: contact element behaviour. J R Soc Interface 5(24):785–789

    Article  Google Scholar 

  11. Heepe L, Varenberg M, Itovich Y, Gorb SN (2011) Suction component in adhesion of mushroom-shaped microstructure. J R Soc Interface 8(57):585–589

    Article  Google Scholar 

  12. Murphy MP, Aksak B, Sitti M (2009) Gecko-inspired directional and controllable adhesion. Small 5(2):170–175

    Article  Google Scholar 

  13. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405(6787):681–685

    Article  Google Scholar 

  14. Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209(18):3569–3579

    Article  Google Scholar 

  15. Stork NE (1980) Scanning electron-microscope study of tarsal adhesive setae in the Coleoptera. Zoolog J Linn Soc 68(3):173–306

    Article  Google Scholar 

  16. Gao HJ, Chen SH (2005) Flaw tolerance in a thin strip under tension. J Appl Mech 72(5):732–737

    Article  Google Scholar 

  17. Peng ZL, Chen SH, Soh AK (2010) Peeling behavior of a bio-inspired nano-film on a substrate. Int J Solids Struct 47(14–15):1952–1960

    Article  Google Scholar 

  18. Li GL, Chang TC (2011) Effect of head shape on the adhesion capability of mushroom-like biological adhesive structures. Acta Mech Solida Sin 24(4):318–325

    Article  Google Scholar 

  19. Carbone G, Pierro E, Gorb SN (2011) Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces. Soft Matter 7(12):5545–5552

    Article  Google Scholar 

  20. Simo JC, Armero F, Taylor RL (1993) Improved versions of assumed enhanced strain tri-linear elements for 3d-finite deformation problems. Comput Methods Appl Mech Eng 110(3–4):359–386

    Article  Google Scholar 

  21. Tvergaard V, Hutchinson JW (1996) Effect of strain-dependent cohesive zone model on predictions of crack growth resistance. Int J Solids Struct 33(20–22):3297–3308

    Article  Google Scholar 

  22. Rahulkumar P, Jagota A, Bennison SJ, Saigal S (2000) Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers. Int J Solids Struct 37(13):1873–1897

    Article  Google Scholar 

  23. Rose JH, Ferrante J, Smith JR (1981) Universal binding-energy curves for metals and bimetallic interfaces. Phys Rev Lett 47(9):675–678

    Article  Google Scholar 

  24. Willis JR (1967) A comparison of fracture criteria of Griffith and Barenblatt. J Mech Phys Solids 15(3):151–162

    Article  Google Scholar 

  25. Xu XP, Needleman A (1994) Numerical simulations of fast crack-growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  Google Scholar 

  26. Gao HJ, Wang X, Yao HM, Gorb S, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37(2–3):275–285

    Article  Google Scholar 

  27. Gorb SN, Varenberg M (2007) Mushroom-shaped geometry of contact elements in biological adhesive systems. J Adhes Sci Technol 21(12–13):1175–1183

    Article  Google Scholar 

  28. Hui CY, Glassmaker NJ, Tang T, Jagota A (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface 1(1):35–48

    Article  Google Scholar 

  29. Huber G, Gorb SN, Spolenak R, Arzt E (2005) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1(1):2–4

    Article  Google Scholar 

  30. Varenberg M, Murarash B, Kligerman Y, Gorb SN (2011) Geometry-controlled adhesion: revisiting the contact splitting hypothesis. Appl Phys A-Mater Sci Process 103(4):933–938

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peng, Z. (2015). Effect of Geometry on the Adhesive Behavior of Bio-inspired Fibrils. In: Bio-inspired Studies on Adhesion of a Thin Film on a Rigid Substrate. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46955-2_7

Download citation

Publish with us

Policies and ethics