Skip to main content

In Vitro Early Safety Pharmacology Screening: Perspectives Related to Cardiovascular Safety

  • Chapter
Principles of Safety Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 229))

Abstract

In vitro screening for cardiovascular safety liabilities of novel drug candidates presents a challenge for the pharmaceutical industry. Such approaches rely on detecting pharmacologic effects on key components of complex integrated system early in drug discovery to define potential safety liabilities. Key to such studies are the concepts of hazard identification vs. risk assessment, drug specificity vs. selectivity, and an appreciation of the challenges faced when attempting to translate in vitro findings to preclinical in vivo as well as clinical effects. This chapter defines some key aspects of early safety pharmacology screening for cardiovascular liabilities, citing studies of two key depolarizing cardiac currents (fast sodium current and L-type calcium current) as examples linked to effects on cardiac conduction and repolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banyasz T, Horvath B, Jian Z, Izu LT, Chen-Izu Y (2012) Profile of L-type Ca(2+) current and Na(+)/Ca(2+) exchange current during cardiac action potential in ventricular myocytes. Heart Rhythm 9(1):134–142

    Article  PubMed Central  PubMed  Google Scholar 

  • Bass AS, Cartwright ME, Mahon C, Morrison R, Snyder R, McNamara P, Bradley P, Zhou YY, Hunter J (2009) Exploratory drug safety: a discovery strategy to reduce attrition in development. J Pharmacol Toxicol Methods 60(1):69–78

    Article  CAS  PubMed  Google Scholar 

  • Bass AS, Hombo T, Kasai C, Kinter LB, Valentin J-P (2015) A historical view and vision into the future of the field of safety pharmacology. In: Pugsley MK, Curtis MJ (eds) Principles of safety pharmacology, Handbook of experimental pharmacology. Springer, Berlin

    Google Scholar 

  • Bean BP, Cohen CJ, Tsien RW (1983) Lidocaine block of cardiac sodium channels. J Gen Physiol 81(5):613–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205

    Article  CAS  PubMed  Google Scholar 

  • Best JM, Kamp TJ (2012) Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol 52(2):376–387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • FDA Briefing Document (2010) Lorcaserin advisory committee meeting, Sept 6, 2010

    Google Scholar 

  • Cavero I (2009a) Safety pharmacology society: 8th annual meeting. Expert Opin Drug Saf 8(2):237–247

    Article  PubMed  Google Scholar 

  • Cavero I (2009b) Exploratory safety pharmacology: a new safety paradigm to de-risk drug candidates prior to selection for regulatory science investigations. Expert Opin Drug Saf 8(6):627–647

    CAS  PubMed  Google Scholar 

  • Chen CM, Gettes LS, Katzung BG (1975) Effect of lidocaine and quinidine on steady-state characteristics and recovery kinetics of (dV/dt)max in guinea pig ventricular myocardium. Circ Res 37(1):20–29

    Article  CAS  PubMed  Google Scholar 

  • Cordes J, Li C, Dugas J, Austin-LaFrance R, Lightbown I, Engwall M et al (2009) Translation between in vitro inhibition of the cardiac Nav1.5 channel and preclinical and clinical QRS widening. J Pharm Tox Methods 60:221 (abstract)

    Article  Google Scholar 

  • Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, Arensberg D, Baker A, Friedman L, Greene HL et al (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The cardiac arrhythmia suppression trial. N Engl J Med 324(12):781–788

    Article  CAS  PubMed  Google Scholar 

  • Elangbam CS, Job LE, Zadrozny LM, Barton JC, Yoon LW, Gates LD, Slocum N (2008) 5-hydroxytryptamine (5HT)-induced valvulopathy: compositional valvular alterations are associated with 5HT2B receptor and 5HT transporter transcript changes in Sprague-Dawley rats. Exp Toxicol Pathol 60(4–5):253–262

    Article  PubMed  Google Scholar 

  • Epstein AE, Hallstrom AP, Rogers WJ, Liebson PR, Seals AA, Anderson JL, Cohen JD, Capone RJ, Wyse DG (1993) Mortality following ventricular arrhythmia suppression by encainide, flecainide, and moricizine after myocardial infarction. The original design concept of the cardiac arrhythmia suppression trial (CAST). JAMA 270(20):2451–2455

    Article  CAS  PubMed  Google Scholar 

  • Erdemli G, Kim AM, Ju H, Springer C, Penland RC, Hoffmann PK (2012) Cardiac safety implications of hNav1.5 Blockade and a framework for pre-clinical evaluation. Front Pharmacol 3:6. doi:10.3389/fphar.2012.00006 (Epub 2012 Jan 26)

    Article  PubMed Central  PubMed  Google Scholar 

  • Fermini B, Fossa AA (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2(6):439–447

    Article  CAS  PubMed  Google Scholar 

  • Galandrin S, Bouvier M (2006) Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70(5):1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Gesty-Palmer D, Luttrell LM (2011) Refining efficacy: exploiting functional selectivity for drug discovery. Adv Pharmacol 62:79–107

    Article  CAS  PubMed  Google Scholar 

  • Gesty-Palmer D, Chen M, Reiter E, Ahn S, Nelson CD, Wang S, Eckhardt AE, Cowan CL, Spurney RF, Luttrell LM, Lefkowitz RJ (2006) Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 281(16):10856–10864

    Article  CAS  PubMed  Google Scholar 

  • Gintant G (2011) An evaluation of hERG current assay performance: translating preclinical safety studies to clinical QT prolongation. Pharmacol Ther 129(2):109–119

    Article  CAS  PubMed  Google Scholar 

  • Gintant GA, Gallacher DJ, Pugsley MK (2011) The ‘overly-sensitive’ heart: sodium channel block and QRS interval prolongation. Br J Pharmacol 164(2):254–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grandi E, Morotti S, Ginsburg KS, Severi S, Bers DM (2010) Interplay of voltage and Ca-dependent inactivation of L-type Ca current. Prog Biophys Mol Biol 103(1):44–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harmer AR, Abi-Gerges N, Easter A, Woods A, Lawrence CL, Small BG, Valentin JP, Pollard CE (2008) Optimisation and validation of a medium-throughput electrophysiology-based hNav1.5 assay using IonWorks. J Pharmacol Toxicol Methods 57(1):30–41

    Article  CAS  PubMed  Google Scholar 

  • Harmer AR, Valentin JP, Pollard CE (2011) On the relationship between block of the cardiac Na+ channel and drug-induced prolongation of the QRS complex. Br J Pharmacol 164(2):260–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heath BM, Cui Y, Worton S, Lawton B, Ward G, Ballini E, Doe CP, Ellis C, Patel BA, McMahon NC (2011) Translation of flecainide- and mexiletine-induced cardiac sodium channel inhibition and ventricular conduction slowing from nonclinical models to clinical. J Pharmacol Toxicol Methods 63(3):258–268

    Article  CAS  PubMed  Google Scholar 

  • Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor interaction. J Gen Physiol 69:487–515

    Google Scholar 

  • Hondeghem LM, Katzung BG (1977) Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta 472:373–398

    Article  CAS  PubMed  Google Scholar 

  • Hondeghem LM, Katzung BG (1984) Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol 24:387–423

    Article  CAS  PubMed  Google Scholar 

  • Hool LC, Di Maria CA, Viola HM, Arthur PG (2005) Role of NAD(P)H oxidase in the regulation of cardiac L-type Ca2+ channel function during acute hypoxia. Cardiovasc Res 67(4):624–635

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71(4):533–554

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson JD, Setola V, Roth BL, Merryman WD (2011) Serotonin receptors and heart valve disease–it was meant 2B. Pharmacol Ther 132(2):146–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Investigators CAST (1989) Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. N Engl J Med 321(6):406–412

    Article  Google Scholar 

  • Ito K, Nagafuchi K, Taga A, Yorikane R, Koike H (1996) Possible involvement of altered Na+ -Ca2+ exchange in negative inotropic effects of class I antiarrhythmic drugs on rabbit and rat ventricles. J Cardiovasc Pharmacol 27(3):355–361

    Article  CAS  PubMed  Google Scholar 

  • January CT, Riddle JM (1989) Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ Res 64(5):977–990

    Article  CAS  PubMed  Google Scholar 

  • Johnson EA, McKinnon MG (1957) The differential effect of quinidine and pyrilamine on the myocardial action potential at various rates of stimulation. J Pharmacol Exp Ther 120(4):460–468

    CAS  PubMed  Google Scholar 

  • Johnson DM, Heijman J, Bode EF, Greensmith DJ, van der Linde H, Abi-Gerges N, Eisner DA, Trafford AW, Volders PG (2013) Diastolic spontaneous calcium release from the sarcoplasmic reticulum increases beat-to-beat variability of repolarization in canine ventricular myocytes after β-adrenergic stimulation. Circ Res 112(2):246–256

    Article  CAS  PubMed  Google Scholar 

  • Jonsson MK, Vos MA, Mirams GR, Duker G, Sartipy P, de Boer TP, van Veen TA (2012) Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG. J Mol Cell Cardiol 52(5):998–1008

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336(2):296–302

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T, Christopoulos A (2012) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12(3):205–216

    Article  PubMed  Google Scholar 

  • Kirsch G (2010) Mechanistic ion channel screening for drug discovery. Drug Discov Dev 13(9):28–30

    CAS  Google Scholar 

  • Kooijman M, van Meer PJ, Moors EH, Schellekens H (2012) Thirty years of preclinical safety evaluation of biopharmaceuticals: did scientific progress lead to appropriate regulatory guidance? Expert Opin Drug Saf 11(5):797–801

    Article  PubMed  Google Scholar 

  • Kou WH, Nelson SD, Lynch JJ, Montgomery DG, DiCarlo L, Lucchesi BR (1987) Effect of flecainide acetate on prevention of electrical induction of ventricular tachycardia and occurrence of ischemic ventricular fibrillation during the early postmyocardial infarction period: evaluation in a conscious canine model of sudden death. J Am Coll Cardiol 9(2):359–365

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, Diecke S, Sallam K, Knowles JW, Nguyen PK, Wang PJ, Bers DM, Robbins RC, Wu JC (2013) Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease specific patterns of cardiotoxicity. Circulation (in press)

    Google Scholar 

  • Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E, Doak AK, Côté S, Shoichet BK (2012) Urban L Large-scale prediction and testing of drug activity on side-effect targets. Nature 486(7403):361–367. doi:10.1038/nature11159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu HR, Rohrbacher J, Vlaminckx E, Van Ammel K, Yan GX, Gallacher DJ (2010) Predicting drug-induced slowing of conduction and pro-arrhythmia: identifying the ‘bad’ sodium current blockers. Br J Pharmacol 160(1):60–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, Kolaja KL, Swanson BJ, January CT (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol 301(5):H2006–H2017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin RL, McDermott JS, Salmen HJ, Palmatier J, Cox BF, Gintant GA (2004) The utility of hERG and repolarization assays in evaluating delayed cardiac repolarization: influence of multi-channel block. J Cardiovasc Pharmacol 43(3):369–379

    Article  CAS  PubMed  Google Scholar 

  • McDonald TF, Pelzer S, Trautwein W, Pelzer DJ (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74(2):365–507

    CAS  PubMed  Google Scholar 

  • Mirams GR, Cui Y, Sher A, Fink M, Cooper J, Heath BM, McMahon NC, Gavaghan DJ, Noble D (2011) Simulation of multiple ion channel block provides improved early prediction of compounds’ clinical torsadogenic risk. Cardiovasc Res 91(1):53–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Möller C, Witchel H (2011) Automated electrophysiology makes the pace for cardiac ion channel safety screening. Front Pharmacol 2:73

    Article  PubMed Central  PubMed  Google Scholar 

  • Muller PY, Milton MN (2012) The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov 11(10):751–761

    Article  CAS  PubMed  Google Scholar 

  • Nada A, Gintant GA, Kleiman R, Gutstein DE, Gottfridsson C, Michelson EL, Strnadova C, Killeen M, Geiger MJ, Fiszman ML, Koplowitz LP, Carlson GF, Rodriguez I, Sager PT (2013) The evaluation and management of drug effects on cardiac conduction (PR and QRS intervals) in clinical development. Am Heart J 165(4):489–500. doi:10.1016/j.ahj.2013.01.011, Epub 2013 Feb 21

    Article  CAS  PubMed  Google Scholar 

  • Nattel S (1991) Antiarrhythmic drug classifications. A critical appraisal of their history, present status, and clinical relevance. Drugs 41(5):672–701

    Article  CAS  PubMed  Google Scholar 

  • Nawrath H, Wegener JW (1997) Kinetics and state-dependent effects of verapamil on cardiac L-type calcium channels. Naunyn Schmiedebergs Arch Pharmacol 355(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Iijima T (2010) Cardiac T-type Ca(2+) channels in the heart. J Mol Cell Cardiol 48(1):65–70

    Article  CAS  PubMed  Google Scholar 

  • Penniman JR, Kim DC, Salata JJ, Imredy JP (2010) Assessing use-dependent inhibition of the cardiac Na(+/−) current (I(Na)) in the PatchXpress automated patch clamp. J Pharmacol Toxicol Methods 62(2):107–118

    Article  CAS  PubMed  Google Scholar 

  • Pugsley MK, Authier S, Curtis MJ (2008) Principles of safety pharmacology. Br J Pharmacol 154(7):1382–1399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ, Roth BL (2000) Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102(23):2836–2841

    Article  CAS  PubMed  Google Scholar 

  • Saucerman JJ, Bers DM (2012) Calmodulin binding proteins provide domains of local Ca2+ signaling in cardiac myocytes. J Mol Cell Cardiol 52(2):312–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaw RM, Rudy Y (1997) Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ Res 81(5):727–741

    Article  CAS  PubMed  Google Scholar 

  • Starmer CF, Courtney KR (1986) Modeling ion channel blockade at guarded binding sites: application to tertiary drugs. Am J Physiol 251(4 Pt 2):H848–H856

    CAS  PubMed  Google Scholar 

  • Tuckwell HC (2012) Quantitative aspects of L-type Ca2+ currents. Prog Neurobiol 96(1):1–31

    Article  CAS  PubMed  Google Scholar 

  • U.S. Food & Drug Administration (2001) ICH S7A safety pharmacology studies for human pharmaceuticals. Guidance for industry. Fed Reg 66:36791–36792

    Google Scholar 

  • U.S. Food & Drug Administration (2005) Guidance for industry: ICH S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. Fed Reg 70:61133–61134

    Google Scholar 

  • Vargas HM, Amouzadeh HR, Engwall MJ (2015) Safety pharmacology evaluation of biopharmaceuticals. In: Pugsley MK, Curtis MJ (eds) Principles of safety pharmacology, Handbook of experimental pharmacology. Springer, Berlin

    Google Scholar 

  • Varró A, Baczkó I (2011) Cardiac ventricular repolarization reserve: a principle for understanding drug-related proarrhythmic risk. Br J Pharmacol 164(1):14–36

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaughan Williams EM (1975) Classification of antidysrhythmic drugs. Pharmacol Ther B 1(1):115–138 (Review)

    CAS  PubMed  Google Scholar 

  • Vaughan Williams EM (1984) A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol 24(4):129–147 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Weiss JN, Garfinkel A, Karagueuzian HS, Chen PS, Qu Z (2010) Early after depolarizations and cardiac arrhythmias. Heart Rhythm 7(12):1891–1899

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Gintant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gintant, G. (2015). In Vitro Early Safety Pharmacology Screening: Perspectives Related to Cardiovascular Safety. In: Pugsley, M., Curtis, M. (eds) Principles of Safety Pharmacology. Handbook of Experimental Pharmacology, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46943-9_2

Download citation

Publish with us

Policies and ethics