Skip to main content

A Historical View and Vision into the Future of the Field of Safety Pharmacology

  • Chapter
Principles of Safety Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 229))

Abstract

Professor Gerhard Zbinden recognized in the 1970s that the standards of the day for testing new candidate drugs in preclinical toxicity studies failed to identify acute pharmacodynamic adverse events that had the potential to harm participants in clinical trials. From his vision emerged the field of safety pharmacology, formally defined in the International Conference on Harmonization (ICH) S7A guidelines as “those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above.” Initially, evaluations of small-molecule pharmacodynamic safety utilized efficacy models and were an ancillary responsibility of discovery scientists. However, over time, the relationship of these studies to overall safety was reflected by the regulatory agencies who, in directing the practice of safety pharmacology through guidance documents, prompted transition of responsibility to drug safety departments (e.g., toxicology). Events that have further shaped the field over the past 15 years include the ICH S7B guidance, evolution of molecular technologies leading to identification of new therapeutic targets with uncertain toxicities, introduction of data collection using more sophisticated and refined technologies, and utilization of transgenic animal models probing critical scientific questions regarding novel targets of toxicity. The collapse of the worldwide economy in the latter half of the first decade of the twenty-first century, continuing high rates of compound attrition during clinical development and post-approval and sharply increasing costs of drug development have led to significant strategy changes, contraction of the size of pharmaceutical organizations, and refocusing of therapeutic areas of investigation. With these changes has come movement away from dedicated internal safety pharmacology capability to utilization of capabilities within external contract research organizations. This movement has created the opportunity for the safety pharmacology discipline to come “full circle” and return to the drug discovery arena (target identification through clinical candidate selection) to contribute to the mitigation of the high rate of candidate drug failure through better compound selection decision making. Finally, the changing focus of science and losses in didactic training of scientists in whole animal physiology and pharmacology have revealed a serious gap in the future availability of qualified individuals to apply the principles of safety pharmacology in support of drug discovery and development. This is a significant deficiency that at present is only partially met with academic and professional society programs advancing a minimal level of training. In summary, with the exception that the future availability of suitably trained scientists is a critical need for the field that remains to be effectively addressed, the prospects for the future of safety pharmacology are hopeful and promising, and challenging for those individuals who want to assume this responsibility. What began in the early part of the new millennium as a relatively simple model of testing to assure the safety of Phase I clinical subjects and patients from acute deleterious effects on life-supporting organ systems has grown with experience and time to a science that mobilizes the principles of cellular and molecular biology and attempts to predict acute adverse events and those associated with long-term treatment. These challenges call for scientists with a broad range of in-depth scientific knowledge and an ability to adapt to a dynamic and forever changing industry. Identifying individuals who will serve today and training those who will serve in the future will fall to all of us who are committed to this important field of science.

“1. Don’t do something just because you can.

2. Don’t do something just because it has always been done.

3. Don’t do something just because others do it.”

“4. Don’t do something because (you believe) it is expected.

5. Don’t do something the results of which cannot be interpreted.

6. Do something because there is a reasonable expectation it will provide knowledge necessary for an accurate decision.”

Gerhard Zbinden and Robert Hamlin (Hamlin 2006)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABPI:

Association of the British Pharmaceutical Industry

ADRs:

Adverse Drug Reactions

AEs:

Adverse Events

APD:

Action Potential Duration

BfArM:

Bundesinstitut für Arzneimittel und Medizinprodukte which is the Federal Institute for Drugs and Medical Devices

CFR:

Code of Federal Regulations

CiPA:

Comprehensive In vitro Proarrhythmia Assay

CNS:

Central Nervous System

CPMP:

Committee for Proprietary Medicinal Products

CROs:

Contract Research Organizations

CSRC:

Cardiac Safety Research Consortium

DSP:

Diplomate in Safety Pharmacology

ECG:

Electrocardiogram

ECVAM:

European Centre for the Validation of Alternative Methods

EFPIA:

European Federation of the Pharmaceutical Industry Association

eIND:

Exploratory Investigational New Drug Application

EMEA:

European Medicines Agency

EU:

European Union

EWG:

Expert Working Group

FDA:

United States Food and Drug Administration

GLP:

Good Laboratory Practice

hERG:

human Ether-a-go-go-Related Gene

ICH:

International Conference on Harmonization

ILSI:

International Life Sciences Institute

IWG:

Implementation Working Group

HESI:

Health and Environmental Sciences Institute

IND:

Investigational New Drug Application

iPSCs:

Induced pluripotent stem cells

JACL:

Japan Association of Contract Laboratories for Safety Evaluation

JNDA:

Japanese New Drug Applications

JPMA:

Japanese Pharmaceutical Manufacturers Association

MHLW:

Ministry of Health, Labour and Welfare

MHW:

Ministry of Health and Welfare

NCEs:

New Chemical Entities

NDAs:

New Drug Applications

PhRMA:

Pharmaceutical Research and Manufacturers of America

Q&As:

Questions and Answers

QT:

Duration of the QT interval of the cardiac electrocardiogram

QT PRODACT:

QT Interval Prolongation: Project for Database Construction

R&D:

Research and Development

SEND:

Standard for Exchange of Nonclinical Data

SP:

Safety pharmacology

SPS:

Safety Pharmacology Society

JSPS:

Japanese Safety Pharmacology Society

TDP:

Therapeutic Products Directorate

TQT:

Clinical Thorough QT study

USA:

United States of America

References

  • Anon (1991) Guidelines for general pharmacology studies. Ministry of Health and Welfare, Tokyo

    Google Scholar 

  • Anon (1995) Guidelines for general pharmacology studies—Japanese guidelines for non-clinical studies of drugs manual. Nippo Yakuji, Ltd, pp 71–80

    Google Scholar 

  • Anon (1997a) Points to consider: the assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products, pp CPMP/986-96

    Google Scholar 

  • Anon (1997b) ICH guidance for industry – M3(R2) nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. http://www.fda.gov/

  • Anon (1997c) ICH guideline M3(R2) on non-clinical safety studies for the conduct of human clinical trials and marketing authorisation for pharmaceuticals, pp EMA/CPMP/ICH/286-1995

    Google Scholar 

  • Anon (1997d) Guidance for industry – S6 addendum to preclinical safety evaluation of biotechnology-derived pharmaceuticals. Fed Regist 62:61515

    Google Scholar 

  • Anon (2000a) Title 21 code of federal regulations (21 CFR part 11) electronic records; electronic signatures

    Google Scholar 

  • Anon (2000b) Title 21 code of federal regulations (21 CFR part 58). Good laboratory practice for nonclinical laboratory studies

    Google Scholar 

  • Anon (2001a) Guidance for industry: ICH M4S: the common technical document for the registration of pharmaceuticals for human use: safety. http://www.fda.gov/

  • Anon (2001b) Guidelines for general pharmacology studies. Ministry of Health and Welfare, Tokyo

    Google Scholar 

  • Anon (2001c) ICH guidance for industry – S7A safety pharmacology studies for human pharmaceuticals. http://www.fda.gov/

  • Anon (2001d) ICH topic M 4 common technical document for the registration of pharmaceuticals for human use – organisation CTD, pp CPMP/ICH/2887-99

    Google Scholar 

  • Anon (2001e) ICHS7A: safety pharmacology studies for human pharmaceuticals, pp CPMP/ICH/539-00

    Google Scholar 

  • Anon (2004a) Innovation or stagnation: challenge and opportunity on the critical path to new medical products. http://www.fda.gov/

  • Anon (2004b) The harmonisation of laws, regulations and administrative provisions relating to the application of the principles of good laboratory practice and the verification of their applications for tests on chemical substances DIRECTIVE 2004/10/EC

    Google Scholar 

  • Anon (2005a) ICH guidance for industry – S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. http://www.fda.gov/

  • Anon (2005b) ICH S7B: the nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals, pp CPMP/ICH/423-02

    Google Scholar 

  • Anon (2010a) Guidance for industry, assessment of abuse potential of drugs (DRAFT). http://www.fda.gov/

  • Anon (2010b) Guidance for industry, S9 nonclinical evaluation for anticancer pharmaceuticals. http://www.fda.gov/

  • Anon (2012a) ICH guideline S6(R1) – preclinical safety evaluation of biotechnology-derived pharmaceuticals. Fed Regis 77:29665–29666

    Google Scholar 

  • Anon (2012b) ICH guideline S6(R1)—preclinical safety evaluation of biotechnology-derived pharmaceuticals. EMA/CHMP/ICH/731268-1998

    Google Scholar 

  • Anon (2014) ICH S7B: the nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals, pp CPMP/ICH/423-02

    Google Scholar 

  • Authier S, Vargas HM, Curtis MJ, Holbrook M, Pugsley MK (2013) Safety pharmacology investigations in toxicology studies: an industry survey. J Pharmacol Toxicol Methods 68:44–51

    Article  CAS  PubMed  Google Scholar 

  • Bass AS, Williams PD (2003) Status of international regulatory guidelines on safety pharmacology. In: Bass AS, Williams PD (ed) Safety pharmacology: a practical guide. TheraSolutions Publications, pp 9–19

    Google Scholar 

  • Bass A, Kinter L, Williams P (2004a) Origins, practices and future of safety pharmacology. J Pharmacol Toxicol Methods 49:145–151

    Article  CAS  PubMed  Google Scholar 

  • Bass AS, Vargas HM, Kinter LB (2004b) Introduction to nonclinical safety pharmacology and the safety pharmacology society. J Pharmacol Toxicol Methods 49:141–144

    Article  CAS  PubMed  Google Scholar 

  • Bass AS, Tomaselli G, Bullingham R III, Kinter LB (2005) Drugs effects on ventricular repolarization: a critical evaluation of the strengths and weaknesses of current methodologies and regulatory practices. J Pharmacol Toxicol Methods 52:12–21

    Article  CAS  PubMed  Google Scholar 

  • Bass A, Valentin JP, Fossa AA, Volders PG (2007) Points to consider emerging from a mini-workshop on cardiac safety: assessing torsades de pointes liability. J Pharmacol Toxicol Methods 56:91–94

    Article  CAS  PubMed  Google Scholar 

  • Bass AS, Darpo B, Breidenbach A, Bruse K, Feldman HS, Garnes D, Hammond T, Haverkamp W, January C, Koerner J, Lawrence C, Leishman D, Roden D, Valentin JP, Vos MA, Zhou YY, Karluss T, Sager P (2008) International life sciences institute (Health and environmental sciences institute, HESI) initiative on moving towards better predictors of drug-induced torsades de pointes. Br J Pharmacol 154:1491–1501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bass AS, Cartwright ME, Mahon C, Morrison R, Snyder R, McNamara P, Bradley P, Zhou YY, Hunter J (2009) Exploratory drug safety: a discovery strategy to reduce attrition in development. J Pharmacol Toxicol Methods 60:69–78

    Article  CAS  PubMed  Google Scholar 

  • Bass AS, Vargas HM, Valentin JP, Kinter LB, Hammond T, Wallis R, Siegl PK, Yamamoto K (2011) Safety pharmacology in 2010 and beyond: survey of significant events of the past 10 years and a roadmap to the immediate-, intermediate- and long-term future in recognition of the tenth anniversary of the safety pharmacology society. J Pharmacol Toxicol Methods 64:7–15

    Article  CAS  PubMed  Google Scholar 

  • Benjamin A, Nogueira da Costa A, Delaunois A, Rosseels ML, Valentin JP (2015) Renal safety pharmacology in drug discovery and development. In: Pugsley MK, Curtis MJ (eds) Principles of safety pharmacology. Springer, Heidelberg

    Google Scholar 

  • Bode G, Olejniczak K (2002) ICH topic: the draft ICH S7B step 2: note for guidance on safety pharmacology studies for human pharmaceuticals. Fundam Clin Pharmacol 16:105–118

    Article  CAS  PubMed  Google Scholar 

  • Borchert B, Lawrenz T, Stellbrink C (2006) Long and short QT syndrome. Herzschrittmacherther Elektrophysiol 17:205–210

    Article  CAS  PubMed  Google Scholar 

  • Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, Whitebread S (2012) Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov 11:909–922

    Article  CAS  PubMed  Google Scholar 

  • Cavero I, Holzgrefe H (2014) Comprehensive in vitro proarrhythmia assay, a novel in vitro/in silico paradigm to detect ventricular proarrhythmic liability: a visionary 21st century initiative. Expert Opin Drug Saf 13:745–758

    Article  CAS  PubMed  Google Scholar 

  • Chain AS, Dubois VF, Danhof M, Sturkenboom MC, Della PO (2013) Identifying the translational gap in the evaluation of drug-induced QTc interval prolongation. Br J Clin Pharmacol 76:708–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chapman KL, Holzgrefe H, Black LE, Brown M, Chellman G, Copeman C, Couch J, Creton S, Gehen S, Hoberman A, Kinter LB, Madden S, Mattis C, Stemple HA, Wilson S (2013) Pharmaceutical toxicology: designing studies to reduce animal use, while maximizing human translation. Regul Toxicol Pharmacol 66:88–103

    Article  CAS  PubMed  Google Scholar 

  • Chi KR (2013) Regulatory watch: speedy validation sought for new cardiotoxicity testing strategy. Nat Rev Drug Discov 12:655

    Article  PubMed  Google Scholar 

  • Collis MC (2006) Integrative pharmacology and drug discovery–is the tide finally turning? Nat Rev Drug Discov 5:377–379

    Article  CAS  PubMed  Google Scholar 

  • Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN (2014) Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13:419–431

    Article  CAS  PubMed  Google Scholar 

  • Cove-Smith L, Woodhouse N, Hargreaves A, Kirk J, Smith S, Price SA, Galvin M, Betts CJ, Brocklehurst S, Backen A, Radford J, Linton K, Roberts RA, Schmitt M, Dive C, Tugwood JD, Hockings PD, Mellor HR (2014) An integrated characterization of serological, pathological, and functional events in doxorubicin-induced cardiotoxicity. Toxicol Sci 140:3–15

    Article  CAS  PubMed  Google Scholar 

  • Curtis MJ, Pugsley MK (2012) Attrition in the drug discovery process: lessons to be learned from the safety pharmacology paradigm. Expert Rev Clin Pharmacol 5:237–240

    Article  CAS  PubMed  Google Scholar 

  • Darpo B (2010) The thorough QT/QTc study four years after the implementation of the ICH E14 1452 guidance. Br J Clin Pharmacol 159(1):49–57

    Article  CAS  Google Scholar 

  • Darpo B, Nebout T, Sager PT (2006) Clinical evaluation of QT/QTc prolongation and proarrhythmic potential for nonantiarrhythmic drugs: the international conference on harmonization of technical requirements for registration of pharmaceuticals for human use E14 guideline. J Clin Pharmacol 46:498–507

    Article  CAS  PubMed  Google Scholar 

  • Davies MR, Mistry HB, Hussein L, Pollard CE, Valentin JP, Swinton J, Abi-Gerges N (2012) An in silico canine cardiac midmyocardial action potential duration model as a tool for early drug safety assessment. Am J Physiol Heart Circ Physiol 302:H1466–H1480

    Article  CAS  PubMed  Google Scholar 

  • Easter A, Sharp TH, Valentin JP, Pollard CE (2007) Pharmacological validation of a semi-automated in vitro hippocampal brain slice assay for assessment of seizure liability. J Pharmacol Toxicol Methods 56:223–233

    Article  CAS  PubMed  Google Scholar 

  • Ewart L, Milne A, Adkins D, Benjamin A, Bialecki R, Chen Y, Ericsson AC, Gardner S, Grant C, Lengel D, Lindgren S, Lowing S, Marks L, Moors J, Oldman K, Pietras M, Prior H, Punton J, Redfern WS, Salmond R, Skinner M, Some M, Stanton A, Swedberg M, Finch J, Valentin JP (2013) A multi-site comparison of in vivo safety pharmacology studies conducted to support ICH S7A & B regulatory submissions. J Pharmacol Toxicol Methods 68:30–43

    Article  CAS  PubMed  Google Scholar 

  • Friedrichs GS, Patmore L, Bass A (2005) Non-clinical evaluation of ventricular repolarization (ICH S7B): results of an interim survey of international pharmaceutical companies. J Pharmacol Toxicol Methods 52:6–11

    Article  CAS  PubMed  Google Scholar 

  • Gavaghan CL, Arnby CH, Blomberg N, Strandlund G, Boyer S (2007) Development, interpretation and temporal evaluation of a global QSAR of hERG electrophysiology screening data. J Comput Aided Mol Des 21:189–206

    Article  CAS  PubMed  Google Scholar 

  • Guth BD, Bass AS, Briscoe R, Chivers S, Markert M, Siegl PK, Valentin JP (2009) Comparison of electrocardiographic analysis for risk of QT interval prolongation using safety pharmacology and toxicological studies. J Pharmacol Toxicol Methods 60:107–116

    Article  CAS  PubMed  Google Scholar 

  • Hamlin RL (2006) A search to predict potential for drug-induced cardiovascular toxicity. Toxicol Pathol 34:75–80

    Article  CAS  PubMed  Google Scholar 

  • Hanson LA, Bass AS, Gintant G, Mittelstadt S, Rampe D, Thomas K (2006) ILSI-HESI cardiovascular safety subcommittee initiative: evaluation of three non-clinical models of QT prolongation. J Pharmacol Toxicol Methods 54:116–129

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M (2003) Draft ICH guideline S7B: guideline on safety pharmacology studies for assessing the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. Nihon Yakurigaku Zasshi 121:377–383

    Article  PubMed  Google Scholar 

  • Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40–51

    Article  CAS  PubMed  Google Scholar 

  • Holdren JP, Lander E, Press W, Savitz M, Blerbaum R, Gates JSJ, Cassel C, Gorenberg MJS (2012) Report to the president on “propelling innovation in drug discovery, development and evaluation”. In: Levin RC, Mirkin C, Schaal B et al (eds) US President’s council of advisors on science and technology (PCAST). https://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-fda-final.pdf

  • Holmes AM, Creton S, Chapman K (2010) Working in partnership to advance the 3Rs in toxicity testing. Toxicology 267:14–19

    Article  CAS  PubMed  Google Scholar 

  • Kaitin KI, DiMasi JA (2011) Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000–2009. Clin Pharmacol Ther 89:183–188

    Article  CAS  PubMed  Google Scholar 

  • Kinter LB, Valentin JP (2002) Safety pharmacology and risk assessment. Fundam Clin Pharmacol 16:175–182

    Article  CAS  PubMed  Google Scholar 

  • Kinter LB, Gossett KA, Kerns WD (1994) Status of safety pharmacology in the pharmaceutical industry - 1993. Drug Dev Res 32:208–216

    Article  CAS  Google Scholar 

  • Kinter LB, Dixon LW (1995) Safety pharmacology program for pharmaceuticals. Drug Dev Res 35:179–182

    Article  CAS  Google Scholar 

  • Kinter LB, Murphy DJ, Mann WA, Leonard TB, Morgan DG (1997) Major organ systems toxicology: an integrative approach to pharmacodynamic safety assessment studies in animals. In: Sipes IG, McQueen CA, Gandolfi AJ (ed) Comprehensive toxicology. Elsevier Science, New York, pp 155–168

    Google Scholar 

  • Kinter LB, Siegl PK, Bass AS (2004) New preclinical guidelines on drug effects on ventricular repolarization: safety pharmacology comes of age. J Pharmacol Toxicol Methods 49:153–158

    Article  CAS  PubMed  Google Scholar 

  • Koerner J, Valentin JP, Willard J, Park EJ, Bi D, Link WT, Fiszman M, Kozeli D, Skinner M, Vargas HM, Cantilena L, Gintant G, Wisialowski T, Pettit S (2013) Predictivity of non clinical repolarization assay data for clinical TQT data in the FDA database. Int J Toxicol 32:63

    Google Scholar 

  • Lamore SD, Kamendi HW, Scott CW, Dragan YP, Peters MF (2013) Cellular impedance assays for predictive preclinical drug screening of kinase inhibitor cardiovascular toxicity. Toxicol Sci 135:402–413

    Article  CAS  PubMed  Google Scholar 

  • Laverty H, Benson C, Cartwright E, Cross M, Garland C, Hammond T, Holloway C, McMahon N, Milligan J, Park B, Pirmohamed M, Pollard C, Radford J, Roome N, Sager P, Singh S, Suter T, Suter W, Trafford A, Volders P, Wallis R, Weaver R, York M, Valentin J (2011) How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? Br J Pharmacol 163:675–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leishman DJ, Beck TW, Dybdal N, Gallacher DJ, Guth BD, Holbrook M, Roche B, Wallis RM (2012) Best practice in the conduct of key nonclinical cardiovascular assessments in drug development: current recommendations from the Safety Pharmacology Society. J Pharmacol Toxicol Methods 65:93–101

    Article  CAS  PubMed  Google Scholar 

  • Lindgren S, Bass AS, Briscoe R, Bruse K, Friedrichs GS, Kallman MJ, Markgraf C, Patmore L, Pugsley MK (2008) Benchmarking safety pharmacology regulatory packages and best practice. J Pharmacol Toxicol Methods 58:99–109

    Article  CAS  PubMed  Google Scholar 

  • Lumley C (1994) General pharmacology, the international regulatory environment, and harmonization of guidelines. Drug Dev Res 32:223–232

    Article  Google Scholar 

  • Mangipudy R, Burkhardt J, Kadambic VJ (2014) Use of animals for toxicology testing is necessary to ensure patient safety in pharmaceutical development. Regul Toxicol Pharmacol 70:439–441

    Article  CAS  PubMed  Google Scholar 

  • Munos B (2009) Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discov 8:959–968

    Article  CAS  PubMed  Google Scholar 

  • Munos BH, Chin WW (2009) A call for sharing: adapting pharmaceutical research to new realities. Sci Transl Med 1:9cm8

    Article  PubMed  Google Scholar 

  • Noble D (2002) Modeling the heart–from genes to cells to the whole organ. Science 295:1678–1682

    Article  CAS  PubMed  Google Scholar 

  • Noble D (2004) Modeling the heart. Physiology (Bethesda) 19:191–197

    Article  CAS  Google Scholar 

  • Nomura S, Bass A, Moe J, Jonsson M, Arrigoni C, Hanson L (2006) In Memoriam: Munehiro Hashimotot. J Pharmacol Toxicol Methods 54:91–93

    Article  CAS  Google Scholar 

  • Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67

    Article  CAS  PubMed  Google Scholar 

  • Omata T, Kasai C, Hashimoto M, Hombo T, Yamamoto K (2005) QT PRODACT: comparison of non-clinical studies for drug-induced delay in ventricular repolarization and their role in safety evaluation in humans. J Pharmacol Sci 99:531–541

    Article  CAS  PubMed  Google Scholar 

  • Osaki M, Kosaka N, Okada F, Ochiya T (2014) Circulating microRNAs in drug safety assessment for hepatic and cardiovascular toxicity: the latest biomarker frontier? Mol Diagn Ther 18:121–126

    Article  CAS  PubMed  Google Scholar 

  • Owen AH (1962) Predicting anticancer drug effects in man from laboratory animal studies. J Chron Dis 15:223–228

    Article  Google Scholar 

  • Ozer JS, Dieterle F, Troth S, Perentes E, Cordier A, Verdes P, Staedtler F, Mahl A, Grenet O, Roth DR, Wahl D, Legay F, Holder D, Erdos Z, Vlasakova K, Jin H, Yu Y, Muniappa N, Forest T, Clouse HK, Reynolds S, Bailey WJ, Thudium DT, Topper MJ, Skopek TR, Sina JF, Glaab WE, Vonderscher J, Maurer G, Chibout SD, Sistare FD, Gerhold DL (2010) A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol 28:486–494

    Article  CAS  PubMed  Google Scholar 

  • Pettit SD, Berridge B, Sarazan RD (2009) A call for more integrated cardiovascular safety assessment. J Pharmacol Toxicol Methods 61:1–2

    Article  PubMed  Google Scholar 

  • Piccini JP, Whellan DJ, Berridge BR, Finkle JK, Pettit SD, Stockbridge N, Valentin JP, Vargas HM, Krucoff MW (2009) Current challenges in the evaluation of cardiac safety during drug development: translational medicine meets the critical path initiative. Am Heart J 158:317–326

    Article  PubMed  Google Scholar 

  • Pierson JB, Berridge BR, Brooks MB, Dreher K, Koerner J, Schultze AE, Sarazan RD, Valentin JP, Vargas HM, Pettit SD (2013) A public-private consortium advances cardiac safety evaluation: achievements of the HESI cardiac safety technical committee. J Pharmacol Toxicol Methods 68:7–12

    Article  CAS  PubMed  Google Scholar 

  • Pointon A, Abi-Gerges N, Cross MJ, Sidaway JE (2013) Phenotypic profiling of structural cardiotoxins in vitro reveals dependency on multiple mechanisms of toxicity. Toxicol Sci 132:317–326

    Article  CAS  PubMed  Google Scholar 

  • Pugsley MK, Curtis MJ (2012) Methodological innovations expand the safety pharmacology horizon. J Pharmacol Toxicol Methods 66:59–62

    Article  CAS  PubMed  Google Scholar 

  • Pugsley MK, Authier S, Curtis MJ (2013) Back to the future: safety pharmacology methods and models in 2013. J Pharmacol Toxicol Methods 68:1–6

    Article  CAS  Google Scholar 

  • Qu Y, Gao B, Fang M, Vargas HM (2013) Human embryonic stem cell derived cardiac myocytes detect hERG-mediated repolarization effects, but not Nav1.5 induced depolarization delay. J Pharmacol Toxicol Methods 68:74–81

    Article  CAS  PubMed  Google Scholar 

  • Redfern WS, Valentin JP (2011) Trends in safety pharmacology: posters presented at the annual meetings of the Safety Pharmacology Society 2001–2010. J Pharmacol Toxicol Methods 64:102–110

    Article  CAS  PubMed  Google Scholar 

  • Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58:32–45

    Article  CAS  PubMed  Google Scholar 

  • Redfern WS, Waldron G, Winter MJ, Butler P, Holbrook M, Wallis R, Valentin JP (2008) Zebrafish assays as early safety pharmacology screens: paradigm shift or red herring? J Pharmacol Toxicol Methods 58:110–117

    Article  CAS  PubMed  Google Scholar 

  • Redfern WS, Ewart L, Lainee P, Robinson S, Valentin JP (2013) Functional assessments in repeat-dose toxicity studies: the art of the possible. Toxicol Res 2:209–234

    Article  CAS  Google Scholar 

  • Robinson S, Delongeas JL, Donald E, Dreher D, Festag M, Kervyn S, Lampo A, Nahas K, Nogues V, Ockert D, Quinn K, Old S, Pickersgill N, Somers K, Stark C, Stei P, Waterson L, Chapman K (2008) A European pharmaceutical company initiative challenging the regulatory requirement for acute toxicity studies in pharmaceutical drug development. Regul Toxicol Pharmacol 50:345–352

    Article  PubMed  Google Scholar 

  • Sager PT, Kowey P (2014) The thorough QT study: is its demise on the horizon? Ann Noninvasive Electrocardiol 19:1–3

    Article  PubMed  Google Scholar 

  • Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N (2014) Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J 167:292–300

    Article  PubMed  Google Scholar 

  • Sarganas G, Garbe E, Klimpel A, Hering RC, Bronder E, Haverkamp W (2014) Epidemiology of symptomatic drug-induced long QT syndrome and Torsade de Pointes in Germany. Europace 16:101–108

    Article  PubMed  Google Scholar 

  • Schein PS, Davis RD, Carter S, Newman J, Schein DR, Rall DP (1970) The evaluation of anticancer drugs in dogs and monkeys for the prediction of qualitative toxicities in man. Clin Pharmacol Ther 11:3–40

    CAS  PubMed  Google Scholar 

  • Shah RR (2002a) Drug-induced prolongation of the QT interval: regulatory dilemmas and implications for approval and labelling of a new chemical entity. Fundam Clin Pharmacol 16:147–156

    Article  CAS  PubMed  Google Scholar 

  • Shah RR (2002b) Drug-induced prolongation of the QT interval: why the regulatory concern? Fundam Clin Pharmacol 16:119–124

    Article  CAS  PubMed  Google Scholar 

  • Shah RR (2007) Cardiac repolarisation and drug regulation: assessing cardiac safety 10 years after the CPMP guidance. Drug Saf 30:1093–1110

    Article  PubMed  Google Scholar 

  • Sibille M, Patat A, Caplain H, Donazzolo Y (2010) A safety grading scale to support dose escalation and define stopping rules for healthy subject first-entry-into-man studies: some points to consider from the French Club Phase I Working Group. Br J Clin Pharmacol 70:736–748

    Article  PubMed Central  PubMed  Google Scholar 

  • Stummann TC, Beilmann M, Duker G, Dumotier B, Fredriksson JM, Jones RL, Hasiwa M, Kang YJ, Mandenius CF, Meyer T, Minotti G, Valentin YJ, Zunkler BJ, Bremer S (2009) Report and recommendations of the workshop of the European Centre for the Validation of Alternative Methods for drug-induced cardiotoxicity. Cardiovasc Toxicol 9:107–125

    Article  PubMed  Google Scholar 

  • ten Tusscher KH, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 286:H1573–H1589

    Article  PubMed  Google Scholar 

  • Trepakova ES, Koerner J, Pettit SD, Valentin JP (2009) A HESI consortium approach to assess the human predictive value of non-clinical repolarization assays. J Pharmacol Toxicol Methods 60:45–50

    Article  CAS  PubMed  Google Scholar 

  • Urban L, Valentin JP, Kaitin KI, Wang J (2014) Introduction: current social, clinical and scientific environment of pharmaceutical R&D. In: Wang J, Urban L (eds) Predictive ADMET: integrated approaches in drug discovery and development. Wiley, Hoboken, NJ, pp 3–23

    Google Scholar 

  • Valentin JP, Hammond T (2008) Safety and secondary pharmacology: successes, threats, challenges and opportunities. J Pharmacol Toxicol Methods 58:77–87

    Article  CAS  PubMed  Google Scholar 

  • Valentin JP, Price S (2007) Overview of the modular training programme in applied toxicology: module on safety pharmacology in pre-clinical research and development. Br Tox Newsletter 30:63–65

    Google Scholar 

  • Valentin JP, Bass AS, Atrakchi A, Olejniczak K, Kannosuke F (2005) Challenges and lessons learned since implementation of the safety pharmacology guidance ICH S7A. J Pharmacol Toxicol Methods 52:22–29

    Article  CAS  PubMed  Google Scholar 

  • Valentin JP, Bialecki R, Ewart L, Hammond T, Leishmann D, Lindgren S, Martinez V, Pollard C, Redfern W, Wallis R (2009) A framework to assess the translation of safety pharmacology data to humans. J Pharmacol Toxicol Methods 60:152–158

    Article  CAS  PubMed  Google Scholar 

  • van der Laan JW, DeGeorge JJ (2013) Global approach in safety testing, ICH guidelines explained. In: van der Laan JW, DeGeorge JJ (eds) AAPS Advances in the Pharmaceutical Sciences, Series 5. Springer, New York. doi:10.1007/978-1-4614-5950-7

    Google Scholar 

  • Vargas HM, Bass AS, Breidenbach A, Feldman HS, Gintant GA, Harmer AR, Heath B, Hoffmann P, Lagrutta A, Leishman D, McMahon N, Mittelstadt S, Polonchuk L, Pugsley MK, Salata JJ, Valentin JP (2008) Scientific review and recommendations on preclinical cardiovascular safety evaluation of biologics. J Pharmacol Toxicol Methods 58:72–76

    Article  CAS  PubMed  Google Scholar 

  • Vargas HM, Amouzadeh HR, Engwall MJ (2013) Nonclinical strategy considerations for safety pharmacology: evaluation of biopharmaceuticals. Expert Opin Drug Saf 12:91–102

    Article  CAS  PubMed  Google Scholar 

  • Williams PD (1990) The role of pharmacological profiling in safety assessment. Regul Toxicol Pharmacol 12:238–252

    Article  CAS  PubMed  Google Scholar 

  • Wood F, Kramer LA (2011) The standard for the exchange of nonclinical data (SEND): history and basics. PharmaSUG 2011, Paper CD14

    Google Scholar 

  • Zbinden G (1979) Pharmacological methods in toxicology: general concepts. Pharmacol Ther Part B 5(1–3):3–6

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. Gerd Bode and Joseph J. DeGeorge for their review of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. Bass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bass, A.S., Hombo, T., Kasai, C., Kinter, L.B., Valentin, JP. (2015). A Historical View and Vision into the Future of the Field of Safety Pharmacology. In: Pugsley, M., Curtis, M. (eds) Principles of Safety Pharmacology. Handbook of Experimental Pharmacology, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46943-9_1

Download citation

Publish with us

Policies and ethics