Skip to main content

Background

  • Chapter
  • First Online:
Data Transmission at Millimeter Waves

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 346))

  • 976 Accesses

Abstract

This chapter is going to present the theoretical background needed for the rest of the book. The blocks used in the design are going to be considered. This includes the quadrature voltage-controlled oscillator (QVCO), local oscillator (LO) buffer, injection-locked and static frequency dividers, low-noise amplifier (LNA) and the mixer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hajimiri A, Lee TH (1999) Design issues in CMOS differential LC oscillators. IEEE J Solid-State Circ 34:717–724

    Article  Google Scholar 

  2. Hegazi E, Rael J, Abidi A (2005) The designer’s guide to high-purity oscillators. Springer, Berlin

    Google Scholar 

  3. John R, Long RF (2009) Integrated circuit design, TU-Delft. MSc course lecture notes

    Google Scholar 

  4. Leeson DB (1966) A simple model of feedback oscillator noise spectrum. Proc IEEE 54:329–330

    Article  Google Scholar 

  5. Craninckx J, Steyaert M (1995) Low-noise voltage-controlled oscillators using enhanced LC-tanks. IEEE Trans Circ Syst II Analog Digit Sig Process 42:794–804

    Google Scholar 

  6. Hajimiri A, Lee TH (1998) A general theory of phase noise in electrical oscillators. IEEE J Solid-State Circ 33:179–194

    Article  Google Scholar 

  7. Huang Q (1998) On the exact design of RF oscillators. In: Proceedings of the IEEE. 1998 custom integrated circuits conference, May 1998

    Google Scholar 

  8. Demir A, Mehrorta A, Roychowdhury J (2000) Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans Circ and Syst-I Fundam Theory Appl 47(5):655–674

    Google Scholar 

  9. Rael JJ, Abidi AA (2000) Physical processes of phase noise in differential LC oscillators. In: Proceedings of the IEEE custom integrated circuits conference (CICC), pp 569–572

    Google Scholar 

  10. Ham D, Hajimiri A (2001) Concepts and methods in optimization of integrated LC VCOs. IEEE J Solid-State Circ 36:896–909

    Article  Google Scholar 

  11. Andreani P, Fard A (2006) More on the 1/f2 phase noise performance of CMOS differential-pair LC-tank oscillators. IEEE J Solid-State Circ 41(12):2703–2712

    Article  Google Scholar 

  12. Darabi H, Abidi AA (2000) Noise in RF CMOS mixers: a simple physical model. IEEE J Solid-States Circ 35(1):15–25

    Article  Google Scholar 

  13. Hegazi E, Abidi AA (2003) Varactor characteristics, oscillator tuning curves, and AM–FM conversion. IEEE J Solid-State Circ 38(6):1033–1039

    Google Scholar 

  14. Levantino S, Samori C, Zanchi A, Lacaita AL (2002) AM-to-PM conversion in varactor-tuned oscillator. IEEE Trans Circ Syst-II Analog Digit Sig Process 49(7):509–513

    Google Scholar 

  15. Razavi B (1998) RF microelectronics. Prentice Hall, Englewood

    Google Scholar 

  16. Cheng K-W et al (2009) A gate-modulated CMOS LC quadrature VCO. In: IEEE radio frequency IC symposium, pp 267–270, June 2009

    Google Scholar 

  17. Mazzanti A, Andreani P (2008) Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE J Solid-State Circ 43(12):2716–2729

    Article  Google Scholar 

  18. Vidojkovic V, Mangraviti G (2010) Design of 60 GHz CMOS receiver and power amplifier in 40 nm LP CMOS: LO buffer, deliverable 60 GHz-B2.2, IMEC SSET-WL, May 2010

    Google Scholar 

  19. Alioto M, Palumbo G (2005) Model and design of bipolar and MOS current-mode logic: CML, ECL and SCL digital circuit. Springer, Berlin

    Google Scholar 

  20. Suárez A (2009) Analysis and design of autonomous microwave circuits. Wiley-IEEE Press, New York

    Google Scholar 

  21. Rateg HR, Lee TH (1999) Superharmonic injection-locked frequency dividers. IEEE J Solid-State Circ 34(6):813–821

    Article  Google Scholar 

  22. Wu H, Hajimiri A (2001) A 19 GHz, 0.5mW, 0.35um CMOS frequency divider with shunt-peaking locking-range enhancement. In: IEEE ISSCC digest of technical papers, pp 412–413

    Google Scholar 

  23. Tiebout M (2004) A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider. IEEE J Solid-State Circ 39(7):1170–1174

    Article  Google Scholar 

  24. Yamamoto K, Fujishima M (2004) 55 GHz CMOS frequency divider with 3.2 GHz locking range. In: Proceedings of ESSCIRC, pp 135–138, Sept 2004

    Google Scholar 

  25. Yamamoto K, Fujishima M (2006) 70 GHz CMOS harmonic injection-locked divider. In: IEEE ISSCC digest of technical papers, pp 600–601

    Google Scholar 

  26. Chen C-C, Tsao H-W, Wang H (2009) Design and analysis of CMOS frequency dividers with wide input locking ranges. IEEE Trans Microw Theory Tech 57(12):3060–3069

    Article  Google Scholar 

  27. Ellinger F et al (2004) 30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology. IEEE Trans Microw Theory Tech 52(5):1382–1391

    Google Scholar 

  28. Wu C-Y, Yu C-Y (2007) Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range. IEEE Trans Microw Theory Tech 55(8):1649–1658

    Article  Google Scholar 

  29. Chien J-C, Lu L-H (2007) 40 GHz wide-locking-rangeregenerative frequency divider and low-phase-noise balanced VCO in 0.18 μm CMOS. IEEE ISSCC digest of technical papers, pp 544–545

    Google Scholar 

  30. Mizuno M et al (1996) A GHz MOS adaptive pipeline technique using MOS current-mode logic. IEEE J Solid-State Circ 31(6):784–791

    Article  Google Scholar 

  31. Usama M, Kwasniewski TA (2004) New CML latch structure for high frequency Prescaler design. In: Canadian conference on electrical and computer engineering 2004, vol 4, pp 1915–1918, May 2004

    Google Scholar 

  32. Usama M, Kwasniewski TA (2006) A 40 GHz frequency divider in 90-nm CMOS technology. In: Proceeding of international north east workshop on circuits and systems (NEWCAS 2006), June 2006

    Google Scholar 

  33. Lee TH (2004) The design of CMOS radio-frequency integrated circuits, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  34. de Vreede L (2009) Microwave circuit design, TU-Delft. MSc course lecture notes

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Khalaf .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khalaf, K., Vidojkovic, V., Wambacq, P., Long, J.R. (2015). Background. In: Data Transmission at Millimeter Waves. Lecture Notes in Electrical Engineering, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46938-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46938-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46937-8

  • Online ISBN: 978-3-662-46938-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics