Advertisement

On-Line Adaptation of the Rotor Time Constant for IM Drives

  • Nguyen Phung QuangEmail author
  • Jörg-Andreas Dittrich
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

A typical problem of the field-orientated control consists of the system having to evaluate the actual value of the rotor flux without flux sensors through a model from the measurable terminal quantities of the motor and the speed (cf. Sect.  4.4). The often used current-speed model contains the rotor time constant of the motor as an essential parameter whose exact knowledge influences decisively the quality of the control. This fact and the working point dependence of this parameter motivate the introduction of special measures to primarily compensate the temperature dependence of the rotor resistance. To achieve this, two approaches are in principle conceivable: Either the rotor flux model can be completed by an on-line adaptation method which corrects the rotor resistance permanently, or the rotor flux is estimated by an observer which is insensitive against variations of the rotor resistance. The first approach is subject of this chapter.

Keywords

Error Model Phase Error Stator Voltage Rotor Resistance Iron Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Atkinson DJ, Acarnley PP, Finch JW (1991) Observers for induction motor state and parameter estimation. IEEE Trans Ind Appl IA-27:1119–1127CrossRefGoogle Scholar
  2. Brodmann M (1994) Beobachterentwurf für nichtlineare zeitdiskrete Systeme. VDI-Fortschrittsberichte Nr. 416, VDI-Verlag, DüsseldorfGoogle Scholar
  3. Chai H, Acarnley PP (1992) Induction motor parameter estimation algorithm using spectral analysis. IEE Proc-B 139(3):165–174Google Scholar
  4. Dittrich JA (1994) Parameter sensitivity of procedures for online adaptation of the rotor time constant of induction machines with field-oriented control. IEE Proc-B 141:353–359Google Scholar
  5. Dittrich JA (1998) Anwendung fortgeschrittener Steuer- und Regelverfahren bei Asynchronantrieben. Habilitationsschrift, TU DresdenGoogle Scholar
  6. Dolal D, Krishnan R (1987) Parameter compensation of indirect vector controlled induction motor drive using estimated airgap power. In: Conference record IEEE-IAS annual meeting, pp 170–176Google Scholar
  7. Du T, Brdys MA (1993) Implementation of extended luenberger observers for joint state and parameter estimation of pwm induction motor drive. In: Proceedings EPE Brighton, pp 4-439–4-444Google Scholar
  8. Fetz J (1991) Parameter adaptation for a field oriented induction machine fed by a pwm-inverter and determination of the fundamental currents in the range of overmodulation. In: Proceedings EPE Firenze, pp 138–144Google Scholar
  9. Gabriel R (1982) Feldorientierte Regelung einer Asynchronmaschine mit einem Mikrorechner. Dissertation, TU BraunschweigGoogle Scholar
  10. Ganji AA, Lataire P (1995) Rotor time constant compensation of an induction motor in indirect vector controlled drives. In: EPE Sevilla, pp 1.431–1.436Google Scholar
  11. Gorter RJA, Veltman A, van den Bosch PPJ (1994) Parameter estimation for induction motors, using the output-error identification method. In: Proceedings of EPE chapter symposium electric drive design and applications, Lausanne, pp 209–214Google Scholar
  12. Holtz J, Thimm Th (1991) Identification of the machine parameters in a vector-controlled induction motor drive. IEEE Trans Ind Appl IA-27(6):1111–1118CrossRefGoogle Scholar
  13. Hung TA, Lipo TA, Lorenz RD (1991) A simple and robust adaptive controller for detuning correction in field oriented induction machines. In: Wisconsin electric machines and power electronics consortium, Research report, pp 91–17, May 1991Google Scholar
  14. Kazmierkowski MP, Sulkowski W (1986) Transistor inverter fed induction motor drive with vector control system. In: Conference record of the IEEE industry applications society annual meeting, Part 1, pp 162–168Google Scholar
  15. Koyama M, Yano M, Kamiyama I, Yano S (1986) Microprocessor-based vector control system for induction motor drives with rotor time constant identification function. IEEE Trans Ind Appl IA-22(3):453–459CrossRefGoogle Scholar
  16. Krishnan R, Pillay P (1986) Sensitivity analysis and comparison of parameter compensation schemes in vector controlled induction motor drives. In: Conference record of the IEEE industry applications society annual meeting, part 1, pp 155–161Google Scholar
  17. Krishnan R, Bharadwaj AS (1991) A review of parameter sensitivity and adaptation in indirect vector controlled induction motor drive systems. IEEE Trans Power Electron 6(4):695–703CrossRefGoogle Scholar
  18. Levi E (1994) Detuned operation of field oriented induction machines due to iron losses. In: Proceedings PCIM‚ Nürnberg, pp 243–253Google Scholar
  19. Lorenz RD, Lawson DB (1990) A simplified approach to continuous online tuning of field-oriented induction machine drives. IEEE Trans Ind Appl IA-26(3):420–424CrossRefGoogle Scholar
  20. Loron L (1993) Stator parameters influence on the field-oriented control tuning. In: Proceedings EPE Brighton, pp 5–79, 5–84Google Scholar
  21. Nilsen R, Kazmierkowski MP (1989) Reduced-order observer with parameter adaption for fast rotor flux estimation in induction machines. IEE Proc-B 136(1):35–43Google Scholar
  22. Nomura M, Ashikaga T, Terashima M, Nahamura T (1987) A high response induction motor control system with compensation for secondary resistance variation. In: IEEE power electronics specialists conference record, pp 46–51Google Scholar
  23. Pena RS, Asher GM (1993) Parameter sensitivity studies for induction motor parameter identification using extended Kalman filters. In: Proceedings EPE Brighton, pp 4–306, 4–311Google Scholar
  24. Pfaff G, Segerer H (1989) Resistance corrected and time discrete calculation of rotor flux in induction motors. In: Proceedings EPE Aachen, pp 499–504Google Scholar
  25. Reitz U (1988) Online-Berechnung der Parameter der Asychronmaschine bei schnell veränderlicher Belastung. Dissertation, TH AachenGoogle Scholar
  26. Rowan TM, Kerkman RJ, Leggate D (1991) A simple online adaption for indirect field orientation of an induction machine. IEEE Trans Ind Appl IA-27(4):720–727CrossRefGoogle Scholar
  27. Schrödl M (1989) Nachführung der Rotorzeitkonstanten von transient betriebenen Asynchronmaschinen mit Hilfe eines nichtlinearen Beobachterkonzepts. etzArchiv Bd. 11, H. 3, S.83–S.88Google Scholar
  28. Schumacher W, Leonhard W (1983) Transistor-fed AC servo drive with microprocessor control. In: International power electronics conference Tokyo, pp 1465–1476, March 1983Google Scholar
  29. Sng EKK, Liew AC (1995) On line tuning of rotor flux observers for field oriented drives using improved stator based flux estimator for low speeds. In: EPE Sevilla, pp 1.437–1.442Google Scholar
  30. Sumner M, Asher GM (1991) The experimental investigation of multi-parameter identification methods for cage induction motors. In: Proceedings EPE Firenze, pp 389–394Google Scholar
  31. Sumner M, Asher GM, Pena R (1993) The experimental investigation of rotor time constant identification for vector controlled induction motor drives during transient operating conditions. In: Proceedings EPE Brighton, pp 5-51–5-56Google Scholar
  32. Vogt G (1985) Digitale Regelung von Asynchronmotoren für numerisch gesteuerte Fertigungseinrichtungen. Springer, BerlinGoogle Scholar
  33. Vucosavić SN, Stojić MR (1993) Online tuning of the rotor time constant for vector-controlled induction motor in position control applications. IEEE Trans Industr Electron IE40(1):130–137Google Scholar
  34. Weidauer J, Dittrich JA (1991) A new adaptation method for induction machines with field-oriented control. In: Proceedings EPE FirenzeGoogle Scholar
  35. Zai L, Lipo T (1987) An extended kalman filter approach to rotor time constant measurement in pwm induction motor drives. In: Conference record IEEE-IAS annual meeting, pp 176–183Google Scholar
  36. Zeitz M (1979) Nichtlineare Beobachter. Regelungstechnik 27(8):S.241–S.249Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute for Control Engineering and AutomationHanoi University of Science and TechnologyHanoiVietnam
  2. 2.Enerdrive GmbHZürichSwitzerland

Personalised recommendations