Skip to main content
Book cover

Robot Fish pp 93–117Cite as

Design and Control of a Multi-joint Robotic Fish

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

This chapter is devoted to the development and control issues of a multi-joint robotic fish, with emphasis on creating a controlled kinematic and dynamic centered environment to further shed light on designing control methods. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme involving a caudal fin, a pair of pectoral fins, as well as a pelvic fin is proposed. To aid the systematic analysis of the multi-joint tail, a multilink Digital Fish Simulator (DFS) is developed, enabling simulations of various fictive swimming patterns. To achieve flexible yet stable motions in aquatic environments, both body wave-based control and central pattern generator—(CPG)-based control are proposed and compared in terms of oscillatory signals and swimming stability. Furthermore, a series of multi-joint robotic prototypes with diversified functions have been built to validate the well-formed ideas and to attain a new level of swimming performance close to real fish.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bar-Cohen Y (ed) (2005) Biomimetics—biologically inspired technologies. CRC Press, Boca Raton

    Google Scholar 

  2. George A (ed) (2011) Advances in biomimetics. InTech, Rijeka

    Google Scholar 

  3. Lepora NF, Verschure P, Prescott TJ (2013) The state of the art in biomimetics. Bioinspir Biomim 8(1), 013001 (11 pp)

    Google Scholar 

  4. Triantafyllou MS, Triantafyllou GS (1995) An efficient swimming machine. Sci Amer 272(3):64–70

    Article  Google Scholar 

  5. Hu H, Low KH (2006) Guest editorial: special issue on biologically inspired robotic fish. Int J Autom Comput 3(4):323–324

    Article  Google Scholar 

  6. Roper DT, Sharma S, Sutton R, Culverhouse P (2011) A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles. Proc IMechE Part M: J Eng Marit Environ 255(2):77–96

    Google Scholar 

  7. Liang J, Wang T, Wen L (2011) Development of a two-joint robotic fish for real-world exploration. J Field Robot 28(1):70–79

    Article  Google Scholar 

  8. Tan X (2011) Autonomous robotic fish as mobile sensor platforms: challenges and potential solutions. Mar Technol Soc J 45(4):31–40

    Article  Google Scholar 

  9. Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24(2):237–252

    Article  Google Scholar 

  10. Lauder GV, Drucker EG (2004) Morphology and experimental hydrodynamics of fish fin control surfaces. IEEE J Ocean Eng 29(3):556–571

    Article  Google Scholar 

  11. Helfman GF, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution, and ecology, 2nd edn. Wiley-Blackwell, New York

    Google Scholar 

  12. Lachat D, Crespi A, Ijspeert AJ (2006) Boxybot: a swimming and crawling fish robot controlled by a central pattern generator. In: Proceedings first IEEE/RAS-EMBS international conference biomedicine robot biomechatron, Pisa, Italy, pp 643–648

    Google Scholar 

  13. Kodati P, Hinkle J, Winn A, Deng X (2008) Microautonomous robotic ostraciiform (MARCO): hydrodynamics, design, and fabrication. IEEE Trans Robot 24(1):105–117

    Article  Google Scholar 

  14. Yu J, Tan M, Wang S, Chen E (2004) Development of a biomimetic robotic fish and its control algorithm. IEEE Trans Syst Man Cybern B Cybern 34(4):1798–1810

    Article  Google Scholar 

  15. Yu J, Wang L, Tan M (2007) Geometric optimization of relative link lengths for biomimetic robotic fish. IEEE Trans Robot 23(2):382–386

    Article  Google Scholar 

  16. Yu J, Liu L, Wang L, Tan M, Xu D (2008) Turning control of a multilink biomimetic robotic fish. IEEE Trans Robot 24(1):201–206

    Article  Google Scholar 

  17. Yu J, Wang K, Tan M, Zhang J (2014) Design and control an embedded vision guided robotic fish with multiple control surfaces. Scientific World J 631296:13

    Google Scholar 

  18. McIsaac KA, Ostrowski JP (2003) Motion planning for anguilliform locomotion. IEEE Trans Robot Autom 19(4):637–651

    Article  Google Scholar 

  19. Lauder GV, Madden PGA (2007) Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins. Exp Fluids 43(5):641–653

    Article  Google Scholar 

  20. Schultz K (2004) Ken Schultz’s field guide to freshwater fish. Wiley, New York

    Google Scholar 

  21. Grillner S, Kozlov A, Dario P, Stefanini C, Menciassi A, Lansner A, Kotaleski JH (2007) Modeling a vertebrate motor system: pattern generation, steering and control of body orientation. Prog Brain Res 165:221–234

    Article  Google Scholar 

  22. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653

    Article  Google Scholar 

  23. Yu J, Tan M, Chen J, Zhang J (2014) A survey on CPG-inspired control models and system implementation. IEEE Trans Neural Netw Learn Syst 25(3):441–456

    Article  Google Scholar 

  24. Videler JJ, Hess F (1984) Fast continuous swimming of two pelagic predators, saithe (Pollachiusvirens) and mackerel (Scomberscombrus): a kinematic analysis. J Exp Biol 109(1):209–228

    Google Scholar 

  25. Yu J, Liu L, Tan M (2008) Three-dimensional dynamic modelling of robotic fish: simulations and experiments. T I Meas Control 30(3–4):239–258

    Google Scholar 

  26. Yu J, Wang M, Tan M, Zhang J (2011) Three-dimensional swimming. IEEE Robot Autom Mag 18(4):47–58

    Article  Google Scholar 

  27. Wang M, Yu J, Tan M (2008) Parameter design for a central pattern generator based locomotion controller. In: Proceedings 1st international conference intelligent robotic applications (LNAI 5314), Wuhan, China, Part I, pp 352–361

    Google Scholar 

  28. Wu Z, Yu J, Tan M (2012) CPG parameter search for a biomimetic robotic fish based on particle swarm optimization. In: Proceedings IEEE international conference robot biomim, Guangzhou, China, pp 563–568

    Google Scholar 

  29. Chu W-S, Lee K-T, Song S-H, Han M-W, Lee J-Y, Kim H-S, Kim M-S, Park Y-J, Cho K-J, Ahn S-H (2012) Review of biomimetic underwater robots using smart actuators. Int J Precis Eng Manuf 13(7):1281–1292

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (nos. 61375102, 61333016, 61421004), the Beijing Natural Science Foundation (no. 3141002), and the Project-Based Personnel Exchange Program with CSC and DAAD (2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzhi Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, J., Tan, M. (2015). Design and Control of a Multi-joint Robotic Fish. In: Du, R., Li, Z., Youcef-Toumi, K., Valdivia y Alvarado, P. (eds) Robot Fish. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46870-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46870-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46869-2

  • Online ISBN: 978-3-662-46870-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics