Skip to main content

Wire-Driven Robot Fish

  • Chapter
  • First Online:
  • 3986 Accesses

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

In this chapter, a class of wire-driven robot fish is presented. It comprises of a streamlined body and a flapping tail, which is designed based on the biomimetic wire-driven mechanism (BWDM). The BWDM mimics not only the fish body skeletal structure but also the muscle arrangement. As a result, the wire-driven robot fish can well replicate various fish flapping motion with minimum number of actuators and thus, has simple structure and excellent propulsion efficiency. Three wire-driven robot fish are presented. The first one is driven by one motor and swims in oscillatory form; the second one is driven by two motors and swims in undulatory form; and the third one can mimic both shark swim and dolphin swim.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Triantafyllou MS, Triantafyllou GS (1995) An efficient swimming machine. Sci Am 272:64–71

    Article  Google Scholar 

  2. Nature Culture Discover. http://australianmuseum.net.au/Sailfish-Istiophorus-platypterus

  3. Domenici P, Blake R (1997) The kinematics and performance of fish fast-start swimming. J Exp Biol 200:1165–1178

    Google Scholar 

  4. Colgate JE, Lynch KM (2004) Mechanics and control of swimming: a review. IEEE J Ocean Eng 29:660–673

    Article  Google Scholar 

  5. Abaid N, Bernhardt J, Frank JA, Kapila V, Kimani D, Porfiri M (2013) Controlling a robotic fish with a smart phone. Mechatronics 23:491–496

    Article  Google Scholar 

  6. Liang J, Wei H, Wang T, Wen L, Wang S, Liu M (2009) Experimental research on biorobotic autonomous undersea vehicle. In: Inzartsev AV (ed) Underwater vehicles. InTech, Osaka

    Google Scholar 

  7. Gu Z, Yamamoto I, Hiratsuka T (2013) Research on bio-mechanism robotics by robotic fish fin technology. In: Kacprzyk J (ed) Intelligent autonomous systems 12, vol 193. Springer, Berlin, pp 577–584

    Google Scholar 

  8. Kumpt JM (1996) The design of a free swimming robot pike. Bachelor of Science, Department of Mechanical Engineering, MIT

    Google Scholar 

  9. Hu H (2006) Biologically inspired design of autonomous robotic fish at essex. In: Presented at the proceedings of the IEEE SMC UK-RI chapter conference 2006 on advances in cybernetic systems, Sheffield

    Google Scholar 

  10. Malcolm EF, MacIver A, Burdick JW (2004) Designing future underwater vehicles principles and mechanisms of the weakly electric fish. IEEE J Ocean Eng 29:651–659

    Google Scholar 

  11. Yu JZ, Tan M, Wang S, Chen E (2004) Development of a biomimetic robotic fish and its control algorithm. IEEE Trans Syst Man Cybern Part B Cybern 34:1798–1810

    Article  Google Scholar 

  12. Kim B, Kim D-H, Jung J, Park J-O (2005) A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Mater Struct 14:1579

    Article  Google Scholar 

  13. Mbemmo E, Chen Z, Shatara S, Tan XB (2008) Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite actuator. In: IEEE international conference on robotics and automation, Pasadena, pp 689–694

    Google Scholar 

  14. Wang ZL, Hang GR, Wang YW, Li J, Du W (2008) Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion. Smart Mater Struct 17:025039

    Google Scholar 

  15. Rossi C, Colorado J, Coral W, Barrientos A (2011) Bending continuous structures with SMAs: a novel robotic fish design. Bioinspir Biomim 6:045005

    Google Scholar 

  16. Le CH, Nguyen QS, Park HC (2012) A SMA-based actuation system for a fish robot. Smart Struct Syst 10:501–515

    Article  Google Scholar 

  17. Chu WS, Lee KT, Song SH, Han MW, Lee JY, Kim HS et al (2012) Review of biomimetic underwater robots using smart actuators. Int J Precis Eng Manuf 13:1281–1292

    Article  Google Scholar 

  18. Wiguna T, Heo S, Park HC, Goo NS (2009) Design and experimental parametric study of a fish robot actuated by piezoelectric actuators. J Intell Mater Syst Struct 20:751–758

    Article  Google Scholar 

  19. Nguyen QS, Heo S, Park HC, Goo NS, Kang T, Voon KJ et al (2009) A fish robot driven by piezoceramic actuators and a miniaturized power supply. Int J Control Autom Syst 7:267–272

    Article  Google Scholar 

  20. Carp. http://www.somso.de/english/zoologie/zos105.htm

  21. Octopus. http://www.scandfish.com/ig/gallery.asp?action=viewimage&categoryid=33&text=&imageid=1245&box=&shownew=

  22. Jones BA, Walker ID (2006) Kinematics for multisection continuum robots. IEEE Trans Robot 22:455

    Google Scholar 

  23. Li Z, Du R, Yao Y (2012) Flying octopus: a LTAV with wire-driven flapping wings. In: International mechanical engineering congress and exposition (IMECE 2012), Houston

    Google Scholar 

  24. Li Z, Du R, Zhang Y, Li H (2013) Robot fish with novel wire-driven continuum flapping propulsor. Appl Mech Mater 300:510–514

    Article  Google Scholar 

  25. Li Z, Du R (2012) Design and analysis of a biomimetic wire-driven flapping propeller. In: 4th IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob), Roma, pp 276–281

    Google Scholar 

  26. Li Z, Du R, Zhang Y, Li H (2012) Robot fish with novel wire-driven continuum flapping propulsor. In: Presented at the 2nd international conference on mechatronics and applied mechanics (ICMAM), Hong Kong

    Google Scholar 

  27. Li Z, Gao W, Du R, Liao B (2012) Design and analysis of a wrie-driven robot tadpole. In: International mechanical engineering congress and exposition (IMECE 2012), Houston

    Google Scholar 

  28. Liao B, Li Z, Du R (2012) Robot tadpole with a novel biomimetic wire-driven propulsor. In: Presented at the IEEE international conference on robotics and biomimetics (ROBIO 2012), Guang Zhou

    Google Scholar 

  29. Li Z, Du R (2014) A novel double-hull boat with biomimetic wire-driven flapping propulsors. In: IEEE international conference on robotics and automation (ICRA 2014), Hong Kong

    Google Scholar 

  30. Li Z, Du R (2013) Design and analysis of a bio-inspired wire-driven multi-section flexible robot. Int J Adv Robot Syst 10

    Google Scholar 

  31. Li Z, Du R, Lei MC, Yuan SM (2011) Design and analysis of a biomimetic wire-driven robot arm. In: Proceedings of the ASME 2011 international mechanical engineering congress and exposition, Denver, pp 11–17

    Google Scholar 

  32. Li Z, Du R (2014) Expanding workspace of underactuated flexible manipulator by actively deploying constrains. In: IEEE international conference on robotics and automation (ICRA 2014), Hong Kong

    Google Scholar 

  33. Li Z, Du R, Ren H, Yu H (2014) Statics modeling of an underactuated wire-driven flexible robotic arm. In: Presented at the IEEE international conference on biomedical robotics and biomechatronics, Sao Paulo

    Google Scholar 

  34. Li Z, Du R (2012) Design and implementation of a biomimetic wire-driven underactuated serpentine manipulator. Trans Control Mech Syst 1:250–258

    Google Scholar 

  35. Sugihara T (2011) Solvability-unconcerned inverse kinematics by the Levenberg–Marquardt method. IEEE Trans Robot 27:984–991

    Article  MathSciNet  Google Scholar 

  36. Kim J-S, Lee D-Y, Kim K, Kang S, Cho K-J (2014) Toward a solution to the snapping problem in a concentric-tube continuum robot grooved tubes with anisotropy. In: Presented at the IEEE international conference on robotics and automation (ICRA), Hong Kong

    Google Scholar 

  37. Orin DE, Schrader WW (1984) Efficient computation of the Jacobian for robot manipulators. Int J Robot Res 3:66–75

    Article  Google Scholar 

  38. Lighthill MJ (1970) Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 44:265–301

    Article  MATH  Google Scholar 

  39. Lighthill MJ (1971) Large-amplitude elongated-body theory of fish locomotion. Proc R Soc B Biol Sci 179:125–138

    Article  Google Scholar 

  40. Buss SR (2004) Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE J Robot Autom 17:1–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Z., Du, R. (2015). Wire-Driven Robot Fish. In: Du, R., Li, Z., Youcef-Toumi, K., Valdivia y Alvarado, P. (eds) Robot Fish. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46870-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46870-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46869-2

  • Online ISBN: 978-3-662-46870-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics