Skip to main content

Metal Injection Molding (MIM) Processing

  • Chapter

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 4))

Abstract

Complex-shaped components can be obtained by net or near-net shaping through the powder metallurgy processing route such as metal injection molding (MIM) process. MIM is an advanced powder processing technique for the mass production of complex-shaped components. This technology also reduces the material used for production and processing cost. Sintered compacts obtained by MIM process show high density over 95 % and excellent mechanical properties. Titanium and its alloys are used in biomedical applications because of their excellent characteristics such as high specific strength, corrosion resistance, biocompatibility, and so on. MIM process is a suitable technique for titanium and its alloys to reduce the processing cost and material cost. In this chapter, tensile and fatigue properties of MIM compacts fabricated with Ti, Ti-6Al-4V, Ti-6Al-4V-4Cr, and Ti-6Al-7Nb are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. German RM, Bose A (1997) Injection molding of metals and ceramics. Metal Powder Industries Federation, Princeton

    Google Scholar 

  2. Miura H, Takagi K (1996) Powder Metallurgy Science, Uchida Rokakuho,Tokyo

    Google Scholar 

  3. Japan Powder Metallurgy Association (2013) http://www.jpma.gr.jp/index.html. Accessed 28 Dec 2013

  4. Omar MA, Mustapha M, Ali EAGE, Subuki I, Meh B (2010) Production of medical device using MIM technique. AIP Conf Proc 1217:287–293

    Google Scholar 

  5. Fraunhofer Institute for Manufacturing Technology and Advanced Materials (2013) http://www.ifam.fraunhofer.de/en/Bremen/Formgebung_Funktionswerkstoffe/Pulvertechnologie/Projekte/Herzklappen.html. Accessed 28 Dec 2013

  6. Ebel T (2008) Titanium and titanium alloys for medical applications: opportunities and challenges. PIM Int 2(2):21–30

    Google Scholar 

  7. German RM (2011) Markets, applications, and financial aspects of global metal powder injection molding (MIM) technologies. Proc PowderMet 2011, 04-120-133

    Google Scholar 

  8. Heaney DF (2012) Handbook of metal injection molding. Woodhead Publishing in Materials, Cambridge

    Google Scholar 

  9. Itoh Y, Harikou T, Sato K, Miura H (2004) Improvement of ductility for injection moulded Ti-6Al-4V alloy. In: Proceedings of 2004 powder metallurgy world congress (PM 2004), compiled by Danninger H, Ratzi R, vol 4. European Powder Metallurgy Association, Vienna, Austria, pp 445–450

    Google Scholar 

  10. Itoh Y, Harikou T, Sato K, Miura H (2005) Fabrication of near-α titanium alloy by metal injection molding. J Jpn Soc Powder Powder Metall 52:43–48

    Article  Google Scholar 

  11. Itoh Y, Miura H, Sato K, Niinomi M (2007) Effect of mixed powders on the properties of Ti-6Al-7Nb alloy by metal injection molding. Mater Sci Forum 534–536:357–360

    Article  Google Scholar 

  12. Itoh Y, Harikou T, Sato K, Komatsu T (2005) Method of preparations for sintered titanium alloy compacts by metal injection molding. JPN Patent No. 2005–281736, Oct 13, 2005

    Google Scholar 

  13. Itoh Y, Harikou T, Satoh K, Miura H (2002) Development of the binder systems for solvent and thermal debinding in MIM process. J Jap Soc Powder Powder Metall 49:518–521

    Article  Google Scholar 

  14. Itoh Y, Miura H, Toshiaki U, Sato K (2010) The influence of density and oxygen content on the mechanical properties of injection molded Ti-6Al-4V alloys. Adv Powder Metall Particle Mater 1:4.46–4.53

    Google Scholar 

  15. Uematsu T, Itoh Y, Sato K, Miura H (2006) Effects of substrate for sintering on the mechanical properties of injection molded Ti-6Al-4V alloy. J Jpn Soc Powder Powder Metall 53:755–759

    Article  Google Scholar 

  16. Miura H, Takemasu T, Kuwano Y, Itoh Y, Sato K (2006) Sintering behavior and mechanical properties of injection molded Ti-6Al-4V alloys. J Jpn Soc Powder Powder Metall 53:815–820

    Article  Google Scholar 

  17. Arimoto N, Fujita M, Nishioka K, Miura H (2007) New production method by gas-atomized process of titanium alloy powder. Ti-2007 science and technology, compiled by Niinomi M, Akiyama S, Ikeda M, Hagiwara M, Maruyama K, vol 2. The Japan Institute of Metals, Kyoto, pp 1137–1140

    Google Scholar 

  18. Itoh Y, Uematsu T, Sato K, Miura H (2008) Effect of Al-40V alloy powders on the properties of injection molded Ti-6Al-4V alloys. J Jpn Soc Powder Powder Metall 55:666–670

    Article  Google Scholar 

  19. Osada T, Miura H, Itoh Y, Fujita M, Arimoto N (2008) Optimization of MIM process for Ti-6Al-7Nb alloy powder. J Jpn Soc Powder Powder Metall 55(10):726–731

    Article  Google Scholar 

  20. Itoh Y, Miura H, Uematsu T, Sato K (2009) Advanced MIM process for high performance Ti alloy materials. J Solid Mech Mater Eng 3(12):1297–1305

    Article  Google Scholar 

  21. Itoh Y, Miura H, Uematsu T, Sato K, Niinomi M (2007) Improvement of the properties of Ti-6Al-7Nb alloy by metal injection molding. Adv Powder Metall Particle Mater Part4:81–86

    Google Scholar 

  22. Ferri OM, Ebel T, Bormann R (2009) High cycle fatigue behaviour of Ti–6Al–4V fabricated by metal injection moulding technology. Mater Sci Eng A 504:107–113

    Article  Google Scholar 

  23. Osada T, Noda M, Kang H, Tsumori F, Miura H (2012) Dynamic fracture characteristics of injection molded titanium alloy compacts. Int Conf Mater Process Technol 2012:141–146

    Google Scholar 

  24. Huang WY, Da Chen C, Chen YN, Shih WJ, Chang CH (2012) Defect detection of metal injection modeling by micro computed tomography. Appl Mech Mater 229–231:1445–1448

    Article  Google Scholar 

  25. Itoh Y, Miura H, Uematsu T, Osada T, Sato K (2009) Effect of Fe or Cr addition on the strengthening Ti-6Al-4V alloy by metal injection molding. J Solid Mech Mater Eng 3(6):921–930

    Article  Google Scholar 

  26. Hagiwara M, Kitaura T, Ono Y, Yuri T, Ogata T, Kanou O (2012) High cycle fatigue properties of a minor boron-modified Ti6Al4V alloy. Mater Trans 53(8):1486–1494

    Article  Google Scholar 

  27. Itoh Y, Uematsu T, Sato K, Miura H (2009) Effect of oxygen content and relative density on the tensile properties of injection molded Ti-6Al-4V alloy. J Jpn Soc Powder Powder Metall 56(5):259–263

    Article  Google Scholar 

  28. Hasegawa M (1973) Stainless steel handbook. Nikkan Kogyo Shimbun Ltd, Tokyo

    Google Scholar 

  29. Akahori T, Niinomi M, Ozeki A (1998) Effect of microstructure on small fatigue crack initiation and propagation characteristics of Ti-6Al-7Nb alloy. J Jpn Inst Metals 62(10):952–960

    Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere thanks to Osaka Titanium Technologies Co., Ltd., for supplying titanium powders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideshi Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miura, H., Osada, T., Itoh, Y. (2015). Metal Injection Molding (MIM) Processing. In: Niinomi, M., Narushima, T., Nakai, M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46842-5_2

Download citation

Publish with us

Policies and ethics