Skip to main content

Stents: Functions, Characteristics, and Materials

  • Chapter
Advances in Metallic Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 4))

Abstract

In the last few decades, there has been a remarkable progress in the field of minimally invasive surgery. Such progress has been supported by the invention and development of novel medical devices, such as stents, guide wires, and filters. Stents may be one of the most important devices used for various lesions including coronary, carotid, biliary, etc. Materials used for these devices are divers, ranging from metallic materials (e.g., stainless steels, cobalt-chromium alloys, nitinol, magnesium alloys, etc.) to biodegradable polymers. This chapter introduces the functions of stents and the currently used materials, and also gives some prospect for future materials and device development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.terumo.co.jp/medical/equipment/me240.html

  2. Baskot BG (ed) (2013) What should we know about prevented, diagnostic, and interventional therapy in coronary artery disease. Intech (Open access book available at http://www.intechopen.com/books/)

  3. Duerig TW, Wholey MA (2002) Comparison of balloon- and self-expanding stents. Minim Invas Ther Allied Technol 11:173–178

    Article  Google Scholar 

  4. Briguori C, Sarais C, PagnottaP LF, Montorfano M, Chieffo A, Sgura F, Corvaja N, Albiero R, Stankovic G, Toutoutzas C, Bonizzoni E, Di Mario C, Colombo A (2002) In-stent restenosis in small coronary arteries. J Am Coll Cardiol 40:403–409

    Article  Google Scholar 

  5. Pache J, Kastrati A, Mehilli J, Schuhlen H, Dotzer F, Hausleiter J, Fleckenstein M, Neumann F-J, Sattelberger U, Schmitt C, Muller M, Dirschinger J, Shomig A (2003) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol 41:1283–1288

    Article  Google Scholar 

  6. O’Brien BJ, Stinson JS, Larsen SR, Eppihimer MJ, Carroll WM (2010) A platinum-chromium steel for cardiovascular stents. Biomaterials 31:3755–3761

    Article  Google Scholar 

  7. Allocco DJ, Jacoski MV, Huibregste B, Mickley T, Dawkins KD (2011) Platinum chromium stent series. Interv Cardiol 6:134–141

    Google Scholar 

  8. Morgan NB (2004) Medical shape memory alloy applications – the market and its products. Mater Sci Eng A378:16–23

    Article  Google Scholar 

  9. Yamauchi K, Ohkata I, Tsuchiya K, Miyazaki S (2011) Shape memory and superelastic alloys. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  10. Suzuki T (2014) Present and future requirements for materials in cardiovascular intervention. Materia Jpn 53:148–152

    Article  Google Scholar 

  11. Erne P, Svhirt M, Resink TJ (2006) The road to bioabsorbable stents: reaching clinical reality? Cardiovasc Interv Radiol 29:11–16

    Article  Google Scholar 

  12. Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, Komori H, Tsuji T, Motohara S, Uehata H (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404

    Article  Google Scholar 

  13. Campos CAM, Zhang YJ, Bourantas CV, Muramatsu T, Garcia-Garcia HM, Lemos PA, Iqbal J, Onuma Y, Serruys PW (2013) Bioresorbable vascular scaffolds in the clinical setting. Interv Cardiol 5:639–646

    Article  Google Scholar 

  14. Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89:651–656

    Article  Google Scholar 

  15. Waksman R, Pakala R, Kuchulakanti PK, Baffour R, Hellinga D, Seabron R, Tio FO, Wittchow E, Hartwig S, Harder C, Rohde R, Heublein B, Andreae A, Waldmann KH, Haverich A (2006) Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv 68:607–617

    Article  Google Scholar 

  16. Loos A, Rohde R, Haverich A, Barlach S (2007) In vitro and in vivo biocompatibility testing of absorbable metal stents. Macromol Symp 253:103–108

    Article  Google Scholar 

  17. Slottow TLP, Pakala R, Okabe T, Hellinga D, Lovec RJ, Tio FO, Bui AB, Waksman R (2008) Optical coherence tomography and intravascular ultrasound imaging of bioabsorbable magnesium stent degradation in porcine coronary arteries. Cardiovasc Revasc Med 9:248–254

    Article  Google Scholar 

  18. Li H, Zhong H, Xu K, Yang K, Liu J, Zhang B, Zheng F, Xia Y, Tan L, Hong D (2011) Enhanced efficacy of sirolimus-eluting bioabsorbable magnesium alloy stents in the prevention of restenosis. J Endovasc Ther 18:407–415

    Article  Google Scholar 

  19. Mario H, Griffiths CD, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V, Ilsley C, Erbel R (2004) Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol 17:391–395

    Article  Google Scholar 

  20. Peeters P, Bosiers M, Verbis J, Deloose K, Heublein B (2005) Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J Endovasc Ther 12:1–5

    Article  Google Scholar 

  21. Bosiers M, Deloose K, Verbist J, Peeters P (2006) Will absorbable metal stent technology change our practice? J Cardiovasc Surg 47:393–397

    Google Scholar 

  22. Zartner P, Cesnjevar R, Singer H, Weyand M (2005) First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardiovasc Interv 66:590–594

    Article  Google Scholar 

  23. Schranz D, Zartner P, Michel-Behnke I, Akintürk H (2006) Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn. Catheter Cardiovasc Interv 67:671–673

    Article  Google Scholar 

  24. Erbel R, Mario CD, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Böse D, Koolen J, Lüscher TF, Weissman N, Waksman R (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomized multicentre trial. Lancet 369:1869–1875

    Article  Google Scholar 

  25. Wittchow E, Adden N, Riedmüller J, Savard C, Waksman R, Braune M (2013) Bioresorbable drug-eluting magnesium alloy scaffold: design and feasibility in a porcine coronary model. Eurointervention 8:1441–1450

    Article  Google Scholar 

  26. Haude M, Erbel R, Erne P, Verheye S, Degen H, Böse D, Vermeersch P, Wijnbergen I, Weissman N, Prati F, Waksman R, Koolen J (2013) Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, fist-in-man BIOSOLVE-I trial. Lancet 381:836–844

    Article  Google Scholar 

  27. Campos CM, Muramatsu T, Iqbal J, Zhang YJ, Onuma Y, Garcia-Garcia HM, Haude M, Lemos PA, Warnack B, Serruys PW (2013) Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease. Int J Mol Sci 14:24492–24500

    Article  Google Scholar 

  28. Li N, Zheng Y (2013) Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol 29:489–502

    Article  Google Scholar 

  29. Moravej M, Mantovani D (2011) Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci 12:4250–4270

    Article  Google Scholar 

  30. Wang J, Tang J, Zhang P, Li Y, Wang J, Lai Y, Qin L (2012) Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. J Biomed Mater Res 100B:1691–1701

    Article  Google Scholar 

  31. Peuster M, Wohlsein P, Brügmann M, Ehlerding M, Seidler K, Fink C, Brauer H, Fischer A, Hausdorf G (2001) A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal–results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569

    Article  Google Scholar 

  32. Waskman R, Pakala R, Baffour R, Seabron R, Hellinga D, Tio FO (2008) Short-term effect of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol 21:15–20

    Article  Google Scholar 

  33. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962

    Article  Google Scholar 

  34. Wu C, Qiu H, Hu X, Ruan Y, Tian Y, Chu Y, Xu X, Xu L, Tang Y, Gao R (2013) Short-term safety and efficacy of the biodegradable ion stent in mini-swine coronary arteries. Chin Med J 126:4752–4757

    Google Scholar 

  35. Nie F, Zheng Y, Wei S, Hu C, Yang G (2010) In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed Mater 5:065015

    Article  Google Scholar 

  36. Moravej M, Purnama A, Fiset M, Couet J, Mantovani D (2010) Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater 6:1843–1851

    Article  Google Scholar 

  37. Hermawan H, Dube D, Mantovani D (2010) Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. J Biomed Mater Res 93A:1–11

    Google Scholar 

  38. Schinhammer M, Hanzi AC, Loffler JF, Uggowitzer PJ (2010) Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater 6:1705–1713

    Article  Google Scholar 

  39. Liu B, Zheng Y, Ruan L (2010) In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett 65:504–543

    Google Scholar 

  40. Haraguchi H (2005) Seimei to kinzoku no sekai (The world of life and metals), Foundation for the Promotion of the Open University of Japan, Tokyo, p 273 (in Japanese)

    Google Scholar 

  41. Suzuki T, Wada O (eds) (1994) Mineral, biryo-genso no eiyougaku (Nutritional Science of minerals and trace elements). Dai-ichi shuppan, Tokyo

    Google Scholar 

  42. Bowen PK, Drelich J, Goldman J (2013) Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater 25:2577–2582

    Article  Google Scholar 

  43. Serruys PW, Garcia-Garcia HM, Onuma Y (2012) From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade? Eur Heart J 33:16–25

    Article  Google Scholar 

  44. Ge Q, Dellasega D, Demir AG, Vedani M (2013) The procession of ultrafine-grained Mg tubes for biodegradable stents. Acta Biomater 9:8604–8610

    Article  Google Scholar 

  45. Shri DNA, Tsuchiya K, Yamamoto A (2014) Effect of high-pressure torsion deformation on surface properties and biocompatibility of Ti-50.0 mol.%Ni alloys. Biointerphases 9:029007

    Article  Google Scholar 

  46. Shri DNA, Tsuchiya K, Yamamoto A (2014) Cytocompatibility evaluation and surface characterization of TiNi deformed by high-pressure torsion. Mater Sci Eng C 43(2014):411–417

    Google Scholar 

  47. Tsuchiya K, Hada Y, Ohnuma M, Namajima K, Koike T, Todaka Y, Umemoto M (2009) Production of TiNi amorphous/nanocrystalline wires with high strength and elastic modulus by severe cold drawing. Scr Mater 60:749–752

    Article  Google Scholar 

  48. Mei QS, Zhang L, Tsuchiya K, Gao H, Ohmura T, Tsuzaki K (2010) Grain size dependence of elastic modulus in nanostructured NiTi. Scr Mater 63:977–980

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Tsuchiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsuchiya, K., Yamamoto, A. (2015). Stents: Functions, Characteristics, and Materials. In: Niinomi, M., Narushima, T., Nakai, M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46842-5_11

Download citation

Publish with us

Policies and ethics