Towards Exploratory OLAP Over Linked Open Data – A Case Study

  • Dilshod IbragimovEmail author
  • Katja Hose
  • Torben Bach Pedersen
  • Esteban Zimányi
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 206)


Business Intelligence (BI) tools provide fundamental support for analyzing large volumes of information. Data Warehouses (DW) and Online Analytical Processing (OLAP) tools are used to store and analyze data. Nowadays more and more information is available on the Web in the form of Resource Description Framework (RDF), and BI tools have a huge potential of achieving better results by integrating real-time data from web sources into the analysis process. In this paper, we describe a framework for so-called exploratory OLAP over RDF sources. We propose a system that uses a multidimensional schema of the OLAP cube expressed in RDF vocabularies. Based on this information the system is able to query data sources, extract and aggregate data, and build a cube. We also propose a computer-aided process for discovering previously unknown data sources and building a multidimensional schema of the cube. We present a use case to demonstrate the applicability of the approach.


Exploratory OLAP LOD QB4OLAP 



This research is partially funded by the Erasmus Mundus Joint Doctorate in “Information Technologies for Business Intelligence – Doctoral College (IT4BI-DC)”.

Supplementary material


  1. 1.
    Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón, J., Naumann, F., Pedersen, T.B., Rizzi, S., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion cubes: towards self-service business intelligence. IJDWM 9(2), 66–88 (2013)Google Scholar
  2. 2.
    Abelló, A., Romero, O., Pedersen, T.B., Berlanga, R., Nebot, V., Aramburu, M.J., Simitsis, A.: Using semantic web technologies for exploratory OLAP: a survey. TKDE 99 (2014)Google Scholar
  3. 3.
    Bojars, U., Passant, A., Giasson, F., Breslin, J.G.: An architecture to discover and query decentralized RDF data. In: SFSW (2007)Google Scholar
  4. 4.
    Etcheverry, L., Vaisman, A., Zimányi, E.: Modeling and querying data warehouses on the semantic web using QB4OLAP. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 45–56. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  5. 5.
    Etcheverry, L., Vaisman, A.A.: QB4OLAP: a vocabulary for OLAP cubes on the semantic web. In: COLD (2012)Google Scholar
  6. 6.
    Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID descriptions. In: COLD (2011)Google Scholar
  7. 7.
    Hagedorn, S., Hose, K., Sattler, K., Umbrich, J.: Resource planning for SPARQL query execution on data sharing platforms. In: COLD (2014)Google Scholar
  8. 8.
    Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K., Umbrich, J.: Data summaries for on-demand queries over linked data. In: WWW, pp. 411–420 (2010)Google Scholar
  9. 9.
    Hartig, O.: Zero-knowledge query planning for an iterator implementation of link traversal based query execution. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 154–169. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder: revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris, Y., Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS, vol. 5887, pp. 182–187. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Searching and browsing linked data with SWSE: the semantic web search engine. J. Web Semant. 9(4), 365–401 (2011)CrossRefGoogle Scholar
  12. 12.
    Hose, K., Schenkel, R.: Towards benefit-based RDF source selection for SPARQL queries. In: SWIM, pp. 2:1–2:86 (2012)Google Scholar
  13. 13.
    Inoue, H., Amagasa, T., Kitagawa, H.: An ETL framework for online analytical processing of linked open data. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds.) WAIM 2013. LNCS, vol. 7923, pp. 111–117. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Kämpgen, B., Harth, A.: Transforming statistical linked data for use in OLAP systems. In: I-SEMANTICS, pp. 33–40 (2011)Google Scholar
  15. 15.
    Kämpgen, B., Harth, A.: No size fits all - running the star schema benchmark with SPARQL and RDF aggregate views. In: ESWC, pp. 290–304 (2013)Google Scholar
  16. 16.
    Kämpgen, B., O’Riain, S., Harth, A.: Interacting with statistical linked data via OLAP operations. In: ILD, pp. 336–353 (2012)Google Scholar
  17. 17.
    Ladwig, G., Tran, T.: Linked data query processing strategies. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 453–469. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  18. 18.
    Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Decis. Support Syst. 52(4), 853–868 (2012)CrossRefGoogle Scholar
  19. 19.
    Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation for RDF queries with multiple joins. In: ICDE, pp. 984–994 (2011)Google Scholar
  20. 20.
    Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.: a document-oriented lookup index for open linked data. IJMSO 3(1), 37–52 (2008)CrossRefGoogle Scholar
  21. 21.
    Pedersen, D., Riis, K., Pedersen, T.B.: XML-extended OLAP querying. In: SSDBM, pp. 195–206 (2002)Google Scholar
  22. 22.
    Pedrinaci, C., Domingue, J.: Toward the next wave of services: linked services for the web of data. J.UCS 16, 1694–1719 (2010)Google Scholar
  23. 23.
    Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., Domingue, J.: iServe: a linked services publishing platform. In: ORES (2010)Google Scholar
  24. 24.
    Prasser, F., Kemper, A., Kuhn, K.: Efficient distributed query processing for autonomous RDF databases. In: EDBT, pp. 372–383 (2012)Google Scholar
  25. 25.
    Romero, O., Abelló, A.: Automating multidimensional design from ontologies. In: DOLAP, pp. 1–8. ACM (2007)Google Scholar
  26. 26.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  27. 27.
    Sheth, A., Larson, J.: Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv. 22(3), 183–236 (1990)CrossRefGoogle Scholar
  28. 28.
    Umbrich, J., Hose, K., Karnstedt, M., Harth, A., Polleres, A.: Comparing data summaries for processing live queries over linked data. WWWJ 14(5–6), 495–544 (2011)CrossRefGoogle Scholar
  29. 29.
    Umbrich, J., Karnstedt, M., Hogan, A., Parreira, J.X.: Hybrid SPARQL queries: fresh vs. fast results. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 608–624. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  30. 30.
    Vaisman, A., Zimányi, E.: Data Warehouse Systems: Design and Implementation. Springer, New York (2014)CrossRefGoogle Scholar
  31. 31.
    W3C. Describing linked datasets with the VoID vocabulary (2010).
  32. 32.
  33. 33.
    W3C. The RDF data cube vocabulary (2013).
  34. 34.
    W3C. W3C semantic web activity homepage (2013).
  35. 35.
    Semantic Web. SPARQL endpoint (2013).

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dilshod Ibragimov
    • 1
    • 2
    Email author
  • Katja Hose
    • 2
  • Torben Bach Pedersen
    • 2
  • Esteban Zimányi
    • 1
  1. 1.Université Libre de BruxellesBrusselsBelgium
  2. 2.Aalborg UniversityAalborgDenmark

Personalised recommendations