Skip to main content

Cytotoxicity of Metallic Biomaterials

  • Chapter
Book cover Advances in Metallic Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 3))

  • 2684 Accesses

Abstract

The increasing use of orthopedic and dental implants, such as joints and roots, has stimulated interest and concern regarding the chronic, long-term effects of metallic biomaterials used. This chapter focuses on cytotoxicity of metallic implants, particles, and ions. Metallic biomaterials may corrode and wear after being implanted in the body, which induces cytotoxicity and inflammatory. In addition, metallic particles and ions may be released through wear or abrasion. Therefore, it is important to understand the effects of metallic materials, including particles and ions, on surrounding cells and tissues. Reactions of fibroblasts and osteoblastic cells to metallic biomaterials have already been investigated by many researchers. Intensity of the cytotoxicity has been reported to depend on the kinds of metallic elements. Some metallic ions alter osteoblastic cell behavior and stimulate the cell functions, such as proliferation, differentiation, and mineralization, while for several ions, there is an appropriate amount for upregulation of such cell functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dobbs HS, Minski MJ (1980) Metal ion release after total hip replacement. Biomaterials 1:193–198

    Article  Google Scholar 

  2. Solar RJ, Pollack SR, Korostoff E (1979) In vitro corrosion testing of titanium surgical implant alloys: an approach to understanding titanium release from implants. J Biomed Mater Res 13:217–250

    Article  Google Scholar 

  3. Sun ZL, Wataha JC, Hanks CT (1997) Effects of metal ions on osteoblast-like cell metabolism and differentiation. J Biomed Mater Res 34:29–37

    Article  Google Scholar 

  4. Yamamoto A, Honma R, Sumita M (1998) Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 39:331–340

    Article  Google Scholar 

  5. Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC, Braeckmans K (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6:446–465

    Article  Google Scholar 

  6. Rivera GP, Oberdörster G, Elder A, Puntes V, Parak WJ (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4:5527–5531

    Article  Google Scholar 

  7. Retamoso LB, Luz TB, Marinowic DR, Machado DC, De Menezes LM, Freitas MPM, Oshima HMS (2012) Cytotoxicity of esthetic, metallic, and nickel-free orthodontic brackets: cellular behavior and viability. Am J Orthod Dentofac Orthop 142:70–74

    Article  Google Scholar 

  8. Sjögren G, Sletten G, Dahl JE (2000) Cytotoxicity of dental alloys, metals, and ceramics assessed by Millipore filter, agar overlay, and MTT tests. J Prosthet Dent 84:229–236

    Article  Google Scholar 

  9. Grill V, Sandrucci MA, Basa M, Di Lenarda R, Dorigo E, Narducci P, Martelli AM, Delbello G, Bareggi R (1997) The influence of dental metal alloys on cell proliferation and fibronectin arrangement in human fibroblast cultures. Arch Oral Biol 42:641–647

    Article  Google Scholar 

  10. Couchman JR, Rees DA, Green MR, Smith CG (1982) Fibronectin has a dual role in locomotion and anchorage of primary chick fibroblasts and can promote entry into the division cycle. J Cell Biol 93:402–410

    Article  Google Scholar 

  11. Gupta AK, Curtis ASG (2004) Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 25:3029–3040

    Article  Google Scholar 

  12. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26:1565–1573

    Article  Google Scholar 

  13. Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, Surprenant A, Lopez-Castejon G, Mann S, Davis SA and others (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol 4:876–883

    Google Scholar 

  14. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  Google Scholar 

  15. Lunov O, Syrovets T, Röcker C, Tron K, Ulrich NG, Rasche V, Mailänder V, Landfester K, Simmet T (2010) Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31:9015–9022

    Article  Google Scholar 

  16. Lunov O, Syrovets T, Büchele B, Jiang X, Röcker C, Tron K, Nienhaus GU, Walther P, Mailänder V, Landfester K and others (2010) The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 31:5063–5071

    Google Scholar 

  17. Sakai T, Takeda S, Nakamura M (2002) The effects of particulate metals on cell viability of osteoblast-like cells in vitro. Dent Mater J 21:133–146

    Article  Google Scholar 

  18. Rae T (1978) The haemolytic action of particulate metals (Cd, Cr, Co, Fe, Mo, Ni, Ta, Ti, Zn, Co-Cr alloy). J Pathol 125:81–89

    Article  Google Scholar 

  19. Takeda S, Akiyama M, Sakane K, Sakai T, Nakamura M (2000) Effects of metal combinations on cytotoxicity evaluation using a dynamic extraction method. Dent Mater J 19:373–380

    Article  Google Scholar 

  20. Mockers O, Deroze D, Camps J (2002) Cytotoxicity of orthodontic bands, brackets and archwires in vitro. Dent Mater 18:311–317

    Article  Google Scholar 

  21. Imirzalioglu P, Alaaddinoglu E, Yilmaz Z, Oduncuoglu B, Yilmaz B, Rosenstiel S (2012) Influence of recasting different types of dental alloys on gingival fibroblast cytotoxicity. J Prosthet Dent 107:24–33

    Article  Google Scholar 

  22. Malkoç S, Öztürk F, Öreki B, Bozkurt BS, Hakki SS (2012) Real-time cell analysis of the cytotoxicity of orthodontic mini-implants on human gingival fibroblasts and mouse osteoblasts. Am J Orthod Dentofac Orthop 141:419–426

    Article  Google Scholar 

  23. Elshahawy WM, Watanabe I, Kramer P (2009) In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials. Dent Mater 25:1551–1555

    Article  Google Scholar 

  24. Elshahawy W, Watanabe I, Koike M (2009) Elemental ion release from four different fixed prosthodontic materials. Dent Mater 25:976–981

    Article  Google Scholar 

  25. Takeda S, Kakiuchi H, Doi H, Nakamura M (1989) Cytotoxicity of pure metals. Jpn J Dent Mater 8:648–652

    Google Scholar 

  26. Levis AG, Bianchi V, Tamino G, Pegoraro B (1978) Cytotoxic effects of hexavalent and trivalent chromium on mammalian cells in vitro. Br J Cancer 37:386–396

    Article  Google Scholar 

  27. Merritt K, Wortman RS, Millard M, Brown SA (1983) XPS analysis of 316 LVM corroded in serum and saline. Artif Cells Blood Substit Biotechnol 11:115–124

    Article  Google Scholar 

  28. Brown SA, Farnsworth LJ, Merritt K, Crowe TD (1988) In vitro and in vivo metal ion release. J Biomed Mater Res 22:321–338

    Article  Google Scholar 

  29. Wataha JC, Hanks CT, Sun Z (1994) Effect of cell line on in vitro metal ion cytotoxicity. Dent Mater 10:156–161

    Article  Google Scholar 

  30. Wataha JC, Hanks CT, Craig RG (1994) In vitro effects of metal ions on cellular metabolism and the correlation between these effects and the uptake of the ions. J Biomed Mater Res 28:427–433

    Article  Google Scholar 

  31. Wataha JC, Hanks CT, Craig RG (1992) In vitro synergistic, antagonistic, and duration of exposure effects of metal cations on eukaryotic cells. J Biomed Mater Res 26:1297–1309

    Article  Google Scholar 

  32. Schedle A, Samorapoompichit P, Rausch-Fan XH, Franz A, Füreder W, Sperr WR, Sperr W, Ellinger A, Slavicek R, Boltz-Nitulescu G (1995) Response of L-929 fibroblasts, human gingival fibroblasts, and human tissue mast cells to various metal cations. J Dent Res 74:1513–1520

    Article  Google Scholar 

  33. Zhou Z, Liu X, Liu Q, Liu L (2009) Evaluation of the potential cytotoxicity of metals associated with implanted biomaterials (I). Prep Biochem Biotechnol 39:81–91

    Article  Google Scholar 

  34. Hahn A, Fuhlrott J, Loos A, Barcikowski S (2012) Cytotoxicity and ion release of alloy nanoparticles. J Nanoparticle Res 14:686

    Article  Google Scholar 

  35. Wu J, Wang L, He J, Zhu C (2012) In vitro cytotoxicity of Cu 2+, Zn 2+, Ag + and their mixtures on primary human endometrial epithelial cells. Contraception 85:509–518

    Article  Google Scholar 

  36. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Obata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Obata, A., Kasuga, T. (2015). Cytotoxicity of Metallic Biomaterials. In: Niinomi, M., Narushima, T., Nakai, M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46836-4_14

Download citation

Publish with us

Policies and ethics