Skip to main content

Corrosion of Metallic Biomaterials

  • Chapter

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 3))

Abstract

Metallic materials have been used as biomedical implants for various parts of the human body for many decades. The physiological environment (body fluid) is considered to be extremely corrosive to metallic surfaces; and corrosion is one of the major problems to the widespread use of the metals in the human body since the corrosion products can cause infections, local pain, swelling, and loosening of the implants. Recently, the most common corrosion-resistant metallic biomaterials are made of stainless steels and titanium and its alloys along with cobalt–chromium–molybdenum alloys. It is well known that protective surface films of the alloys play a key role in corrosion of the metallic implants. Key documents on the corrosion behavior of the metallic biomaterials in human body have been compiled under this chapter as a review.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Williams DF (1998) Medical and dental materials, vol 14, Mater Sci Tech. VCH, Weinheim

    Google Scholar 

  2. Mudali KU, Sridhar TM, Raj B (2003) Corrosion of bio implants. Sadhana 28:601–637

    Google Scholar 

  3. Zhen Z, Xi T, Zheng Y (2013) A review on in vitro corrosion performance test of biodegradable metallic materials. Trans Nonferrous Metal Soc 23:2283–2293

    Google Scholar 

  4. Geetha M, Singh AK, Asokamania R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants. Prog Mater Sci 54:397–425

    Google Scholar 

  5. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Elsevier/Academic, San Diego

    Google Scholar 

  6. Williams DF (1994) Titanium: epitome of biocompatibility or cause for concern. J Bone Joint Surg 76:348–349

    Google Scholar 

  7. Virtanen S, Milošev I, Gomez-Barren E, Trebše R, Salo J, Konttinen YT (2008) Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater 4:468–476

    Google Scholar 

  8. Okazaki Y, Gotoh E (2008) Metal release from stainless steel, Co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants. Corros Sci 50:3429–3438

    Google Scholar 

  9. Bauer S, Schmuki P, Mark K, Park J (2013) Engineering biocompatible implant surfaces: part I: materials and surfaces. Prog Mater Sci 58:261–326

    Google Scholar 

  10. Mears DC (1975) The use of dissimilar metals in surgery. J Biomed Mater Res 9:133–148

    Google Scholar 

  11. Zsklarska-Smialowska Z (1986) Pitting corrosion of metals. National Association of Corrosion Engineers, Houston

    Google Scholar 

  12. Fraker AC (1987) Corrosion 13. ASM International, Ohio, USA

    Google Scholar 

  13. Virtanen S, Curty C (2004) Metastable and stable pitting corrosion of titanium in halide solutions. Corrosion 60:643–649

    Google Scholar 

  14. Sumita M, Hanawa T, Teoh SH (2004) Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials—review. Mater Sci Eng C 24:753–760

    Google Scholar 

  15. Sivakumar M, Mudali KU, Rajeswari S (1994) Investigation of failures in stainless steel orthopaedic implant devices: fatigue failure due to improper fixation of a compression bone plate. J Mater Sci Lett 13:142–145

    Google Scholar 

  16. Yu J, Zhao ZJ, Li LX (1993) Corrosion fatigue resistances of surgical implant stainless steels and titanium alloy. Corros Sci 35:587–597

    Google Scholar 

  17. Syrett BC, Wing SS (1978) An electrochemical investigation of fretting corrosion of surgical implant materials. Corrosion 11:379–386

    Google Scholar 

  18. Lutz J, Mändl S (2010) Reduced tribocorrosion of CoCr alloys in simulated body fluid after nitrogen insertion. Surf Coat Technol 204:3043–3046

    Google Scholar 

  19. More NS, Diomidis N, Paul SN, Roy M, Mischler S (2011) Tribocorrosion behavior of β titanium alloys in physiological solutions containing synovial components. Mater Sci Eng C 31:400–408

    Google Scholar 

  20. Sinnett-Jones PE, Wharton JA, Wood RJK (2005) Micro-abrasion–corrosion of a CoCrMo alloy in simulated artificial hip joint environments. Wear 259:898–909

    Google Scholar 

  21. Yan Y, Neville A, Dowson D, Williams S (2006) Tribocorrosion in implants—assessing high carbon and low carbon Co–Cr–Mo alloys by in situ electrochemical measurements. Tribol Int 39:1509–1517

    Google Scholar 

  22. Reclaru L, Lerf R, Eschler PY, Blatter A, Meyer JM (2002) Pitting, crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material. Biomaterials 23:3479–3485

    Google Scholar 

  23. Willert HG, Broba LG, Buchhorn GH, Jensen PH, Koster G, Lang I (1996) Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clin Orthop Relat Res 333:51–75

    Google Scholar 

  24. Pholer OEM (2002) ASM Handbook 11. ASM International, Ohio, USA

    Google Scholar 

  25. Okazaki Y, Kyo K, Ito Y, Tateishi T (1997) Effect of friction on the corrosion resistance for implant alloys in physiological saline solution. J Jap Inst Met 38:344–352

    Google Scholar 

  26. Imam MA, Fraker AC, Brown SA, Lemons JE (1996) Medical applications of titanium and its alloys: the material and biological issues, ASTM STP 1272. American Society for Testing and Materials, Philadelphia, pp 3–16

    Google Scholar 

  27. Sumita M (1997) Present status and future trend of metallic materials used in orthopedics. Orthop Surg 48:927

    Google Scholar 

  28. Takazawa K, Miyagawa H, Hariya A (2003) Metal allergy to stainless steel wire after coronary artery bypass grafting. Jpn Soc Artif Organs 6:71

    Google Scholar 

  29. Vahter M, Berglund M, Akesson A, Liden C (2002) Metals and women’s health. Environ Res 88:145

    Google Scholar 

  30. Staffolani N, Damiani F, Lilli C, Guerra M, Belcastro S, Locci P (1999) Ion release from orthodontic appliances. J Dent 27:449

    Google Scholar 

  31. Pulido M, Parrish A (2003) Metal-induced apoptosis: mechanisms. Mutat Res 533:227

    Google Scholar 

  32. Black J (1981) Biomedical engineering and instrumentation. Marcel Dekker, New York

    Google Scholar 

  33. Yang K, Ren Y (2010) Nickel-free austenitic stainless steels for medical applications. Sci Technol Adv Mater 11:13

    Google Scholar 

  34. Clayton CR (1986) Passivity mechanisms in stainless steels: Mo–N synergism. Report No. N00014-85-K-0437, New York

    Google Scholar 

  35. Mudali UK, Dayal RK, Gnanamoorthy JB, Rodriguez P (1996) High nitrogen steels. Relationship between pitting and intergranular corrosion of nitrogen-bearing austenitic stainless steels. Mater Trans 37:1568–1573

    Google Scholar 

  36. Sakamoto T, Abo H, Okazaki T, Ogawa T, Ogawa H, Zaizen T (1980) Alloys for the eighties. Climax Molybdenum Co., Greenwich

    Google Scholar 

  37. Hennig FF, Raithel HJ, Schaller KH (1992) Nickel-, chrom- and cobalt-concentrations in human tissue and body fluids of hip prosthesis patients. J Trace Elem Electrol Health Dis 6:239–243

    Google Scholar 

  38. Pazzaglia UE, Minoia C, Gualtieri G, Gualtieri I, Riccardi C, Ceciliani L (1986) Metal ions in body fluids after arthroplasty. Acta Orthop Scand 57:415–418

    Google Scholar 

  39. Sunderman FW Jr, Hopfer SM, Swift T, Rezuke WN, Ziebka L, Highman P, Edwards B, Folcik M, Gossling HR (1989) Cobalt, chromium, and nickel concentrations in body fluids of patients with porous-coated knee or hip prostheses. J Orthop Res 7:307–315

    Google Scholar 

  40. Jacobs JJ, Skipor AK, Patterson LM, Hallab NJ, Paprosky WG, Black J, Galante JO (1998) Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study. J Bone Joint Surg 80-A:1447–1458

    Google Scholar 

  41. Schaffer AW, Pilger A, Engelhardt C, Zweymueller Z, Ruediger HW (1999) Increased blood cobalt and chromium after total hip replacement. Clin Toxicol 37:839–844

    Google Scholar 

  42. Bronder W, Bitzan P, Meisinger V, Kaider A, Gottsaune F, Kotz R (1997) Elevated serum cobalt with metal-on-metal articulating surfaces. J Bone Joint Surg 79-A:316–321

    Google Scholar 

  43. Ardlin BI, Dahl JE, Tibballs JE (2005) Static immersion and irritation tests of dental metal-ceramic alloys. Eur J Oral Sci 113:83–89

    Google Scholar 

  44. Steinemann SG, Revell P (1999) Materials for medical engineering, vol 2, Euromat’99. Wiley-VCH, Weinheim, pp 199–203

    Google Scholar 

  45. Zardiackas LD, Mitchell DW, Disegi JA, Lemons JE (1996) Medical applications of titanium and its alloys: the material and biological issues, ASTM STP 1272. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  46. Wang KK, Gustavs LJ, Dumble JH, Lemon JE (1996) Medical applications of titanium and its alloys: the material and biological issues, ASTM STP 1272. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  47. Mishra AK, Davidson JA, Poggie RA, Kovacs P, FitzGerald TJ, Lemons JE (1996) Medical applications of titanium and its alloys: the material and biological issues, ASTM STP 1272. American Society for Testing and Materials, Philadelphia, pp 96–113

    Google Scholar 

  48. Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1:30–42

    Google Scholar 

  49. Okazaki Y (2002) Effect of friction on anodic polarization properties of metallic. Biomaterials 23:2071–2077

    Google Scholar 

  50. Richard AC (2003) Laboratory corrosion testing of medical implants. ASM International, Newyark, Delaware, USA

    Google Scholar 

  51. Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention – a review. Recent Pat Corros Sci 2:40–54

    Google Scholar 

  52. Bundy KJ (1994) Corrosion and other electrochemical aspects of biomaterials. Crit Rev Biomed Eng 22:139–251

    Google Scholar 

  53. González JEG, Mirza-Rosca JC (1999) Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem 471:109–115

    Google Scholar 

  54. Preetha A, Banerjee R (2005) Comparison of artificial saliva substitutes. Trend Biomater Artif Organs 18:178–186

    Google Scholar 

  55. JIS T 0302: Testing method for corrosion resistance of metallic biomaterials by anodic polarization measurement (2000) Japanese Industrial Standards, Japan

    Google Scholar 

  56. Talha M, Behera CK, Sinha OP (2013) A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mater Sci Eng C 33:3563–3575

    Google Scholar 

  57. Ilevbare GO, Burstein GT (2001) The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels. Corros Sci 43:485–513

    Google Scholar 

  58. Kanerva L, Forstrom L (2001) Allergic nickel and chromate hand dermatitis induced by orthopaedic metal implant. Contact Dermatitis 44:103–104

    Google Scholar 

  59. Torgerser S, Gilhuus-Moe OT, Gjerdet NR (1993) Immune response to nickel and some clinical observations after stainless steel miniplate osteosynthesis. Int J Oral Maxillofac Surg 22:246–250

    Google Scholar 

  60. Menzel J, Kirschner W, Stein G (1996) High nitrogen containing Ni-free austenitic steels for medical applications. ISIJ Int 36:893–900

    Google Scholar 

  61. Ren Y, Yang K, Zhang B (2005) In vitro study of platelet adhesion on medical nickel-free stainless steel surface. Mater Lett 59:1785–1789

    Google Scholar 

  62. Yamamoto A, Kohyama Y, Kuroda D, Hanawa T (2004) Cytotoxicity evaluation of Ni-free stainless steel manufactured by nitrogen adsorption treatment. Mater Sci Eng C 24:737–743

    Google Scholar 

  63. Montanaro L, Cervellati M, Campoccia D, Arciola CR (2006) Promising in vitro performances of a new nickel-free stainless steel. J Mater Sci Mater Med 17:267–275

    Google Scholar 

  64. Fini M, Aldini N, Torricelli P, Giavaresi G, Borsari V, Lenger H, Bernauer J, Giardino R, Chiesa R, Cigada A (2003) A new austenitic stainless steel with negligible nickel content: an in vitro and in vivo comparative investigation. Biomaterials 24:4929–4939

    Google Scholar 

  65. Newman RC, Lu YC, Bandy R, Clayton CR (1984) Proceedings of the ninth international congress on metallic corrosion, vol 4. National Research Council, Ottawa, p 394

    Google Scholar 

  66. World Health Organization (WHO), IARC Monographs on the evaluation of carcinogenic risks to humans, vol 74, Surgical implants and other foreign bodies. Lyon, p 65

    Google Scholar 

  67. Schultze JW, Lohrengel MM (2000) Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim Acta 45:2499–2513

    Google Scholar 

  68. Schmuki P (2002) From Bacon to barriers: a review on the passivity of metals and alloys. J Solid State Electrochem 6:145–164

    Google Scholar 

  69. Herting G, Odnevall Wallinder I, Leygraf C (2006) Factors that influence the release of metals from stainless steels exposed to physiological media. Corros Sci 48:2120–2132

    Google Scholar 

  70. Herting G, Odnevall Wallinder I, Leygraf C (2007) Metal release from various grades of stainless steel exposed to synthetic body fluids. Corros Sci 49:103–111

    Google Scholar 

  71. Herting G, Odnevall Wallinder I, Leygraf C (2008) Corrosion-induced release of chromium and iron from ferritic stainless steel grade AISI 430 in stimulated food contact. J Food Eng 87:291–300

    Google Scholar 

  72. Taveira LV, Frank G, Strunk HP, Dick LFP (2005) The influence of surface treatment in hot acid solution on corrosion resistance and oxide structure of stainless steels. Corros Sci 47:757–769

    Google Scholar 

  73. Kruger J (1989) The nature of the passive film on iron and ferrous alloys. Corros Sci 29:149–162

    Google Scholar 

  74. Shieu FS, Deng MJ, Lin SH (1998) Microstructure and corrosion resistance of a type 316 L stainless steel. Corros Sci 40:1267–1279

    Google Scholar 

  75. Scepanovic VM, MacDougall B, Graham MJ (1984) Nature of passive films on Fe–26Cr alloy. Corros Sci 24:479–490

    Google Scholar 

  76. Amonette JE, Rai D (1990) Identification of noncrystalline (Fe, Cr)(OH)3 by infrared spectroscopy. Clays Clay Miner 38:129–136

    Google Scholar 

  77. Chun-Che S, Chun-Ming S, Yea-Yang S, Lin Hui Julie S, Mau-Song C, Shing-Jong L (2004) Effect of surface oxide properties on corrosion resistance of 316 L stainless steel for biomedical applications. Corros Sci 46:427–444

    Google Scholar 

  78. DeLangis PA, Yen TF (1986) Electronic antihemocoagulation. Biomater Med Devices Artif Organs 14:195–225

    Google Scholar 

  79. Carroll WM (1990) The influence of temperature, applied potential, buffer and inhibitor addition on the passivation behaviour of a commercial grade 316 L steel in aqueous halide solutions. Corros Sci 30:643–655

    Google Scholar 

  80. Sato N (1990) An overview on the passivity of metals. Corros Sci 31:1–19

    Google Scholar 

  81. Sivakumar M, Mudali KU, Rajeswari S (1993) Pit-induced corrosion failures in stainless steel orthopaedic implant devices. Proc Twelfth Inter Corros Congress Houston (TX) 3B:1949–1956

    Google Scholar 

  82. Tanabe H, Mudali KU, Togashi K, Misawa T (1998) In situ pH measurements during localised corrosion of type 316LN stainless steel using scanning electrochemical microscopy. J Mater Sci Lett 17:551–553

    Google Scholar 

  83. Boehlert C, Niinomi M, Ikedu M (2005) Introduction. Mat Sci Eng C 25:247–252

    Google Scholar 

  84. Dowson D (1992) Friction and wear of medical implants and prosthetic devices. Friction, lubrication, and wear technology, ASM handbook, vol 18. ASM International, Ohio, USA, pp 1342–1360

    Google Scholar 

  85. Liua X, Chub PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R 47:49–121

    Google Scholar 

  86. Leclerc MF (1987) ASM metals handbook 2. ASM International

    Google Scholar 

  87. Jacobs JJ, Gilbert JL, Urban RM (1990) Corrosion of metal orthopaedic implants. J Bone Joint Surg 80-A:268–282

    Google Scholar 

  88. Steinemann SG (1996) Metal implants and surface reactions. Injury 27:16–22

    Google Scholar 

  89. Knob LJ, Olson DL (1987) Corrosion. Metals Handbook 13:669

    Google Scholar 

  90. Kasemo B (2002) Biological surface science. Surf Sci 500:656–677

    Google Scholar 

  91. Ong JL, Lucas LC, Raikar GN, Connatser R, Gregory JC (1995) Spectroscopic characterization of passivated titanium in a physiologic solution. J Mater Sci Mater Med 6:113–119

    Google Scholar 

  92. Scharnweber D (1998) Metals as biomaterials. Wiley, Chichester

    Google Scholar 

  93. Bess E, Cavin R, Ma K, Ong JL (1999) Protein adsorption and osteoblast responses to heat-treated titanium surfaces. Implant Dent 8:126–132

    Google Scholar 

  94. Ellingsen JE (1991) A study on the mechanism of protein adsorption to TiO2. Biomaterials 12:593–596

    Google Scholar 

  95. Hanawa T, Asami K, Asaoka KJ (1998) Repassivation of titanium and surface oxide film regeneration in simulated bioliquid. J Biomed Mater Res 40:530–538

    Google Scholar 

  96. Thull R (1978) Implantatwerkstoffe für die Endoprothetik. Fachverlag Schiele and Schön, Berlin, Germany

    Google Scholar 

  97. Kelly EJ (1982) Electrochemical behavior of titanium. Mod Aspect Electrochem 14:319–424

    Google Scholar 

  98. Schmidt M (1992) Spezifische Adsorption organischer Moleküle auf oxidiertem Titan: “Bioaktivität” auf molekularem Niveau. Osteologie 4:222–235

    Google Scholar 

  99. Schenk MK, Duschner H, Biehl V, Eisenbarth E, Breme J (2000) Influence of titanium–vanadium alloys on cell morphology: electron microscopy and ESCA studies. Surf Interface Anal 30:29–31

    Google Scholar 

  100. Mäusli PA, Bloch PR, Geret V, Steinemann SG (1986) Biological and biomechanical performance of biomaterials. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  101. Mäusli PA, Simpson JP, Burri G, Steinemann SG (1988) Implant materials in biofunction advances in biomaterials. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  102. Lausmaa J, Ask M, Rolander U, Kasemo B (1989) Preparation and analysis of Ti and alloyed Ti surfaces. Mater Res Soc Symp Proc 647–653

    Google Scholar 

  103. Aragon PJ, Hulbert SF (1972) Corrosion of Ti-6Al-4 V in simulated body fluids and bovine plasma. J Biomed Mater Res 6:155–164

    Google Scholar 

  104. Kobayashi E, Wang TJ, Doi H, Yoneyama T, Hamanaka H (1998) Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings. J Mater Sci Mater Med 9:567–574

    Google Scholar 

  105. Burstein GT, Liu C, Souto RM (2005) The effect of temperature on the nucleation of corrosion pits on titanium in Ringer’s physiological solution. Biomaterials 26:245–256

    Google Scholar 

  106. Milošev I, Metikoš-Huković M, Strehblow HH (2000) Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials 21:2103–2113

    Google Scholar 

  107. Milošev I, Strehblow HH (2000) The behavior of stainless steels in physiological solution containing complexing agent studied by X- ray photoelectron spectroscopy. J Biomed Mater Res 52:404–412

    Google Scholar 

  108. Milošev I, Strehblow HH (2003) The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochim Acta 48:2767–2774

    Google Scholar 

  109. Meachin G, Williams DF (1973) Change in non-osseous tissue adjacent to titanium implants. J Biomed Mater Res 7:555–572

    Google Scholar 

  110. Woodman JL, Jacobs JJ, Galante JO, Urban RM (1984) Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: a long-term study. J Orthop Res 1:421–430

    Google Scholar 

  111. Ektessabi AM, Otsuka T, Tsuboi Y, Yokoyama K, Al-brektsson T, Sennerby L, Johansson C (1994) Application of micro beam PIXE to detection of titanium ion release from dental and orthopaedic implants. Int J PIXE 4:81–91

    Google Scholar 

  112. Ektessabi AM, Otsuka T, Tsuboi Y, Horino Y, Mokuno Y, Fujii K, Albrektson T, Sennerby L, Johansson C (1996) Preliminary experimental results on mapping of the elemental distribution of the organic tissues surrounding titanium-alloy implants. Nucl Instr Meth 109–110:278–283

    Google Scholar 

  113. Bianco PD, Ducheyne P, Cuckler JM (1996) Local accumulation of titanium released from a titanium implant in the absence of wear. J Biomed Mater Res 31:227–234

    Google Scholar 

  114. Merritt K, Brown SA (1988) Effect of proteins and pH on fretting corrosion and metal ion release. J Biomed Mater Res 22:111–120

    Google Scholar 

  115. Williams RL, Brown SA, Merritt K (1988) Electrochemical studies on the influence of proteins on the corrosion of implant alloys. Biomaterials 9:181–186

    Google Scholar 

  116. Semlitsch M, Staub F, Weber H (1986) Development of a vital, high strength titanium aluminum-niobium alloy for surgical implants. Proceedings of the 5th European conference on biomaterials, Paris, France, pp 69–74

    Google Scholar 

  117. Velten D, Biehl V, Aubertin E, Valeske B, Possart W, Breme J (2002) Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol–gel coating techniques and their characterization. Biomed Mater 59:18–28

    Google Scholar 

  118. Clark GCF, Williams DF (1982) The effects of proteins on metallic corrosion. J Biomed Mater Res 16:125–134

    Google Scholar 

  119. Velten D, Schenk-Meuser K, Biehl V, Duschner H, Breme J (2003) Characterization of thermal and anodic oxide layers on β- and on near-β-titanium alloys for biomedical application. Z Met 94:667–675

    Google Scholar 

  120. Okazaki Y, Ito A, Tateishi T, Ito Y (1994) Effect of alloying elements on of dental cast anodic polarization properties of titanium alloys in acid solutions. Mater Trans JIM 35:58–66

    Google Scholar 

  121. Okazaki Y (2001) A New Ti–15Zr–4Nb–4Ta alloy for medical applications. Curr Opinion Solid State Mater Sci 5:45–53

    Google Scholar 

  122. Niinomi M (2002) Recent metallic materials for biomedical applications. Metall Mater Trans A 33A:477–486

    Google Scholar 

  123. Gold JM, Schmidt M, Steinemann SG (1989) XPS study of amino acids adsorption to titanium surfaces. Helv Phys Act 62:246–249

    Google Scholar 

  124. Ryhanen J, Kallioinen M, Tuukkanen J, Junila J, Niemela E, Sandvik P et al (1998) In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: muscle and perineural tissue responses and encapsule membrane thickness. J Biomed Mater Res 41:481–488

    Google Scholar 

  125. Assad M, Lemieux N, Rivard CH, Yahia LH (1999) Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation. Biomed Mater Eng 9:1–12

    Google Scholar 

  126. Putters JL, Kaulesar SDM, de Zeeuw GR, Bijma A, Besselink PA (1992) Comparative cell culture effects of shape memory metals (Nitinol), nickel and titanium: a biocompatibility estimation. Eur Surg Res 24:378–382

    Google Scholar 

  127. Kapanen A, Ryhanen J, Danilov A, Tuukkanen J (2001) Effect of nickel-titanium shape memory alloy on bone formation. Biomaterials 22:2475–2480

    Google Scholar 

  128. Hanawa T (2003) Reconstruction and regeneration of surface oxide film on metallic materials in biological environments. Corros Rev 21:161–181

    Google Scholar 

  129. Hanawa T, Ota M (1991) Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12:767–774

    Google Scholar 

  130. Hanawa T (1991) Titanium and its oxide film; a substrate for formation of apatite. In: Davies JE (ed) The bone-biomaterial interface. University of Toronto Press, Toronto, Canada, pp 49–61

    Google Scholar 

  131. Hanawa T, Ota M (1992) Characterization of surface film formed on titanium in electrolyte using XPS. Appl Surf Sci 55:269–276

    Google Scholar 

  132. Murakami K, Ukai H, Hanawa T, Asaoka K (1997) Japanese Society for Biomaterials. Tokyo, Japan, 36

    Google Scholar 

  133. Hazan R, Brener R, Oron U (1993) Bone growth to metal implants is regulated by their surface chemical properties. Biomaterials 8:570–574

    Google Scholar 

  134. Ask M, Rolander U, Lausmaa J, Kasemo B (1990) Microstructure and morphology of surface oxide films on Ti-6Al-4VJ. Mater Res 5:1662–1667

    Google Scholar 

  135. Tummler HP (1986) Oberflächeneigenschaften von Titan und Tantal für Implantate. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg

    Google Scholar 

  136. Wälivaara B, Aronsson BJ, Rodahl M, Lausmaa J, Tengvall P (1994) Titanium with different oxides-in vitro studies of protein adsorption and contact activation. Biomaterials 15:827–834

    Google Scholar 

  137. Probster L, Dent M, Lin WL, Huttenmann H (1992) Effect of fluoride prophylactic agents on titanium surfaces. Int J Oral Max Impl 7:390–394

    Google Scholar 

  138. McMinn D, Daniel J (2006) History and modern concepts in surface replacement. Proc Inst Mech Eng H J Eng Med 220:239–251

    Google Scholar 

  139. McMinn R (2000) Hip Resurfacing (BHR) history, development and clinical results. Midland Medical Technologies, Birmingham

    Google Scholar 

  140. Contu F, Elsener B, Bohni H (2003) Electrochemical behavior of CoCrMo alloy in the active state in acidic and alkaline buffered solutions. J Electrochem Soc 150:419–424

    Google Scholar 

  141. Sun D, Wharton JA, Wood RJK, Ma L, Rainforth WM (2007) Microabrasion- corrosion of cast CoCrMo alloy in simulated body fluids. in 34th Leeds-Lyon Symposium on Tribology. Elsevier Science Ltd., Lyon

    Google Scholar 

  142. Nagai A, Tsutsumi Y, Suzuki Y, Katayama K, Hanawa T, Yamashita K (2012) Characterization of air-formed surface oxide film on a Co-Ni-Cr-Mo alloy (MP35N) and its change in Hanks’ solution. Appl Surf Sci 258:5490–5498

    Google Scholar 

  143. Merchant RE, Wang I (1994) Physical and chemical aspects of biomaterials used in humans. In: Greco RS (ed) Implantation biology: the host response and biomedical devices. CRC Press, London, pp 13–38

    Google Scholar 

  144. Bates JF, Knapton AG (1977) Metals and alloys in dentistry. Inter Metals Rev 22:39–60

    Google Scholar 

  145. Lin H, Bumgardner JD (2004) Changes in the surface oxide composition of Co-Cr-Mo implant alloy by macrophage cells and their released reactive chemical species. Biomaterials 25:1233–1238

    Google Scholar 

  146. Strandman E, Landt H (1982) Oxidation resistance of dental chromium-cobalt alloys. Quintessence Dent Technol 6:67–74

    Google Scholar 

  147. Smith DC, Pilliar RM, Metson JB, McIntyre NS (1991) Dental implant materials. II. Preparative procedures and surface spectroscopic studies. J Biomed Mater Res 25:1069–1084

    Google Scholar 

  148. Pan J, Liao H, Leygraf C, Thierry D, Li J (1998) Variation of oxide films on titanium induced by osteoblast-like cell culture and the influence of an H2O2 pretreatment. J Biomed Mater Res 40:244–256

    Google Scholar 

  149. O’Brien B, Carroll WM, Kelly MJ (2002) Passivation of nitinol wire for vascular implants – a demonstration of the benefits. Biomaterials 23:1739–1748

    Google Scholar 

  150. Sawase T, Wennerberg A, Baba K, Tsuboi Y, Sennerby L, Johansson CB, Albrektsson T (2001) Application of oxygen ion implantation to titanium surfaces: effects on surface characteristics, corrosion resistance, and bone response. Clin Implant Dent Relat Res 3:221–229

    Google Scholar 

  151. Matkovic T, Matkovic P, Malina J (2004) Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys. J Alloys Compd 366:293–297

    Google Scholar 

  152. Hiromotoa S, Onoderab E, Chibab A, Asamic K, Hanawa T (2005) Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co–Cr–Mo alloys. Biomaterials 26:4912–4923

    Google Scholar 

  153. Bellefontaine G (2010) The corrosion of CoCrMo alloys for biomedical applications. Master of Research, School of Metallurgy and Materials University of Birmingham, Birmingham

    Google Scholar 

  154. Codaro EN, Melnikov P, Ramires I, Guastaldi AC (2000) Corrosion behavior of a cobalt-chromium-molybdenum alloy. Russ J Electrochem 36:1117–1121

    Google Scholar 

  155. Yan Y, Neville A, Dowson D (2007) Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear 263:1105–1111

    Google Scholar 

  156. Cawley J, Metcalf JEP, Jones AH, Band TJ, Skupien DS (2003) A tribological study of cobalt chromium molybdenum alloys used in metal-on-metal resurfacing hip arthroplasty. 4th International Conference on Wear of Materials. Elsevier Science SA, Washington, DC

    Google Scholar 

  157. Kinbrum A, Unsworth A (2008) The wear of high-carbon metal-on-metal bearings after different heat treatments. Proc Inst Mech Eng H J Eng Med 222(H6):887–895

    Google Scholar 

  158. Kauser F (2007) Corrosion of CoCrMo alloys for biomedical applications’. Department of Metallurgy and Materials, School of Engineering, University of Birmingham, Birmingham, pp 4–285

    Google Scholar 

  159. Contu F, Elsener B, Bohni H (2005) Corrosion behaviour of CoCrMo implant alloy during fretting in bovine serum. Corros Sci 47:1863–1875

    Google Scholar 

  160. Metikos-Hukovic M, Babic R (2007) Passivation and corrosion behaviours of cobalt and cobalt–chromium–molybdenum alloy. Corros Sci 49:3570–3579

    Google Scholar 

  161. Cannillo V, Colmenares-Angulo J, Lusvarghi L, Pierli F (2009) In vitro characterisation of plasma-sprayed apatite/wollastonite glass-ceramic biocoatings on titanium alloys. J Eur Ceram Soc 29:1665–1667

    Google Scholar 

  162. Ong JL, Lucas LC, Lacefield WR, Rigney ED (1992) Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition. Biomaterials 13:249–254

    Google Scholar 

  163. Schwartz M (1994) Deposition from aqueous solutions: an overview. In: Bunshah RF (ed) Handbook of deposition technologies for films and coatings: science, technology and applications, 2nd edn. Noyes Publications, Park Ridge, pp 506–617

    Google Scholar 

  164. Aksakal B, Gavgali M, Dikici B (2010) The effect of coating thickness on corrosion resistance of hydroxyapatite coated Ti6Al4V and 316L SS implants. J Mater Eng Perform 19:894–899

    Google Scholar 

  165. Sonmez S, Aksakal B, Dikici B (2012) Corrosion protection of AA6061-T4 alloy by sol&-gel derived micro and nano-scale hydroxyapatite (HA) coating. J Sol-Gel Sci Techn 63:510–518

    Google Scholar 

  166. Zhitomirsky I (2000) New developments in electrolytic deposition of ceramic films. Am Ceram Soc Bull 79:57–63

    Google Scholar 

  167. Zhitomirsky I (2002) Cathodic electrodeposition of ceramic and organoceramic materials: fundamental aspects. Adv Colloid Interfac 97:279–317

    Google Scholar 

  168. Sarkar P, Nicholson S (1996) Electrophoretic deposition (EPD): mechanisms, kinetics, and applications to ceramics. J Am Ceramic Soc 79:1987–2002

    Google Scholar 

  169. Spencer K, Zhang MX (2011) Optimisation of stainless steel cold spray coatings using mixed particle size distributions. Surf Coat Tech 205:5135–5140

    Google Scholar 

  170. Sova A, Grigoriev S, Okunkova A, Smurov I (2013) Cold spray deposition of 316 L stainless steel coatings on aluminium surface with following laser post-treatment. Surf Coat Tech 235:283–289

    Google Scholar 

  171. Campbell AA (2003) Bioceramics for implant coatings. Mater Today 6:26–30

    Google Scholar 

  172. Mohammadi Z, Ziaei-Moayyed AA, Mesgar SMA (2008) In vitro dissolution of plasma-sprayed hydroxyapatite coatings with different characteristics: experimental study and modeling. Biomed Mater 3:1–7

    Google Scholar 

  173. Ensinger W (2004) Ion beam sputter coating of three-dimensional objects: rings, cylinder, and tubes. Surf Coat Tech 177–178:264–270

    Google Scholar 

  174. Lensch O, Kraus T, Sundermann C, Enders B, Ensinger W (2002) Protection of cylinders by ion-beam sputter deposition: corrosion of carbon-coated aluminium tubes. Surf Coat 158–159:599–603

    Google Scholar 

  175. Liu D, Troczynskia T, Tseng WJ (2002) Aging effect on the phase evolution of water-based sol–gel hydroxyapatite. Biomaterials 23:1227–1236

    Google Scholar 

  176. Gross KA, Chai CS, Kannangara GK, Ben-Nissan B (1998) Thin hydroxyapatite coatings via sol–gel synthesis. J Mater Sci Mater Med 9:839–843

    Google Scholar 

  177. Liu P, Pan X, Yang W, Cai K, Chen Y (2012) Al2O3-ZrO2 ceramic coating fabricated on WE43 magnesium alloy by cathodic plasma electrolytic deposition. Mater Lett 70:16–18

    Google Scholar 

  178. Seo D, Ogawa K, Sakaguchi K, Miyamoto N, Tsuzuki Y (2012) Parameter study influencing thermal conductivity of annealed pure copper coatings deposited by selective cold spray processes. Surf Coat Tech 206:2316–2324

    Google Scholar 

  179. Phani PS, Rao DS, Joshi SV, Sundararajan GJ (2007) Effect of process parameters and heat treatments on properties of cold sprayed copper coatings. J Therm Spray Techn 16:425–434

    Google Scholar 

  180. Cinca N, Rebled JM, Estrade S, Peiro F, Fernandez J, Guilemany JM (2013) Influence of the particle morphology on the Cold Gas Spray deposition behavior of titanium on aluminum light alloys. J Alloy Compd 554:89–96

    Google Scholar 

  181. Al-Mangoura B, Mongrain R, Irissou E, Yue S (2013) Improving the strength and corrosion resistance of 316 L stainless steel for biomedical applications using cold spray. Surf Coat Tech 216:297–307

    Google Scholar 

  182. Dikici B, Ozel S, Gavgali M, Somunkiran I (2012) The effect of arc current on the corrosion behaviour of coated NiTi alloy on AISI304 by plasma transferred arc process. Prot Met Phys Chem Surf 48:562–566

    Google Scholar 

  183. Singha G, Singh H, Sidhu BS (2013) In-Vitro corrosion investigations of plasma sprayed hydroxyapatite and hydroxyapatite-calcium phosphate coating on 316 L SS. Appl Surf Sci 284:81–818

    Google Scholar 

  184. Metikos-Hukovic M, Tkalcec E, Kwokal A, Piljac J (2003) An in vitro study Ti and Ti-alloys coated with sol–gel derived hydroxyapatite coating. Surf Coat Tech 165:40–50

    Google Scholar 

  185. Lavos-Valereto C, Costa I, Wolyne S (2002) The electrochemical behavior of Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxyapatite coating in Hank’s solution. J Biomed Mater Res 63:664–700

    Google Scholar 

  186. Hermawan H (2012) Biodegradable metals. SpringerBriefs in Materials. Chapter 2 Biodegradable metals: state of the art, Berlin, Germany

    Google Scholar 

  187. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F (2008) Degradable biomaterials based on magnesium corrosion. Curr Opinion Solid State Mater Sci 12:63–72

    Google Scholar 

  188. Hermawan H, Dubé D, Mantovani D (2010) Review: developments in metallic biodegradable stents. Acta Biomater 6:1693–1697

    Google Scholar 

  189. Moravej M, Mantovani D (2011) Review biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci 12:4250–4270

    Google Scholar 

  190. Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6:1680–1692

    Google Scholar 

  191. Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology. Heart 89:651–656

    Google Scholar 

  192. Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V, Ilsley C, Erbel R (2004) Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol 17:391–395

    Google Scholar 

  193. Peeters P, Bosiers M, Verbist J, Deloose K, Heublein B (2005) Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J Endovasc Ther 12:1–5

    Google Scholar 

  194. Zartner P, Cesnjevar R, Singer H, Weyand M (2005) First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardiovasc Interv 66:590–594

    Google Scholar 

  195. Valiev RZ, Zehetbauer MJ, Estrin Y, Höppel HW, Ivanisenko Y, Hahn H, Wilde G, Roven HJ, Sauvage X, Langdon TG (2007) The innovation potential of bulk nanostructured materials. Adv Eng Mater 7:9

    Google Scholar 

  196. Yilmazer H, Niinomi M, Nakai M, Cho K, Hieda J, Todaka Y, Miyazaki T (2013) Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater Sci Eng C Mater Biol Appl 33:2499–2507

    Google Scholar 

  197. Valiev RZ, Estrin Y, Horita Z, Langdon TG (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58:33–39

    Google Scholar 

  198. Rubitschek FN, Karaman I, Maier HJ (2012) Corrosion fatigue behavior of a biocompatible ultrafine-grained niobium alloy in simulated body fluid. J Mech Behav Biomed 5:181–192

    Google Scholar 

  199. Thorpe SJ, Ramaswami B, Aust AT (1998) Corrosion and Auger studies of a nickel-base metal-metalloid. J Electrochem Soc 135:2162

    Google Scholar 

  200. Rofagha R, Erb U, Ostander D, Palumbo G, Aust KT (1993) The effects of grain size and phosphorous on the corrosion of nanocrystalline Ni–P alloys. Nanostruct Mater 2:12

    Google Scholar 

  201. Miyamoto H, Harada K, Mimaki T, Vinogradov A, Hashimoto S (2008) Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing. Corros Sci 50:1215–1220

    Google Scholar 

  202. Vinogradov A, Mimaki T, Hashimoto S, Valiev R (1999) On the corrosion behavior of ultra-fine grain copper. Scr Mater 41:319–326

    Google Scholar 

  203. Xu XX, Nie FL, Zhang JX, Zheng W, Zheng YF, Hu C, Yang G (2010) Corrosion and ion release behavior of ultra-fine grained bulk pure copper fabricated by ECAP in Hanks solution as potential biomaterial for contraception. Mater Lett 64:524–527

    Google Scholar 

  204. Hadzima B, Janecek M, Estrin Y, Kim HS (2007) Microstructure and corrosion properties of ultrafine-grained interstitial free steel. Mater Sci Eng A 462:243–247

    Google Scholar 

  205. Dikici B, Yilmazer H, Niinomi M, Nakai M, Ozdemir I, Gavgali M (2012) Effect of high-pressure torsion (HPT) processing on corrosion behavior of a new biomedical β-type titanium alloy. Corrosion-2012, Physico Chemical Mechanics of Materials, Special Issue No: 9, 95–100, 4–6 June, Lviv/Ukraine

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Dikici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dikici, B., Esen, Z., Duygulu, O., Gungor, S. (2015). Corrosion of Metallic Biomaterials. In: Niinomi, M., Narushima, T., Nakai, M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46836-4_12

Download citation

Publish with us

Policies and ethics