Advertisement

Enzymatic Conversion of CO2 (Carboxylation Reactions and Reduction to Energy-Rich C1 Molecules)

Chapter

Abstract

This chapter deals with the enzymatic conversion of CO2. It covers the two aspects of the fixation of the entire CO2 molecule into substrates (carboxylation) and the reduction of CO2 to other C1 (or C2) energy-richer molecules. The known mechanisms are discussed and barriers to exploitation at the industrial level highlighted.

Keywords

Formate Dehydrogenase Pyruvate Decarboxylase Carboxylation Reaction Acetogenic Bacterium Clostridium Pasteurianum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tong X, El-Zahab B, Zhao X, Liu Y, Wang P (2011) Enzymatic synthesis of L-lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle. Biotechnol Bioeng 108(2):465–469CrossRefGoogle Scholar
  2. 2.
    Park SW, Joo OS, Jung KD, Kim H, Han SH (2001) Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process. Appl Catal A Gen 211:81–90CrossRefGoogle Scholar
  3. 3.
    Azuma M, Hashimoto K, Hiromoto M (1990) Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc 137:1772–1778CrossRefGoogle Scholar
  4. 4.
    Subrahmanyam M, Kaneco S, Alonso-Vante N (1999) A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Appl Catal B Environ 23(2–3):169–174CrossRefGoogle Scholar
  5. 5.
    Kuwabata S, Nishida K, Tsuda R, Inoue H, Yoneyama H (1994) Photochemical reduction of carbon dioxide to methanol using ZnS microcrystallite as a photocatalyst in the presence of methanol dehydrogenase. J Electrochem Soc 141(6):1498–1503CrossRefGoogle Scholar
  6. 6.
    Aresta M, Quaranta E, Liberio R, Dileo C, Tommasi I (1998) Enzymatic synthesis of 4-OH-benzoic acid from phenol and CO2: the first example of a biotechnological application of a carboxylase enzyme. Tetrahedron 54(30):8841–8846CrossRefGoogle Scholar
  7. 7.
    Dave BC, Obert R (1999) Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices. J Am Chem Soc 121:12192–12193CrossRefGoogle Scholar
  8. 8.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefGoogle Scholar
  9. 9.
    Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591CrossRefGoogle Scholar
  10. 10.
    Hugler M, Huber H, Stetter KO, Fuchs G (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173Google Scholar
  11. 11.
    Glueck SM, Gumus S, Fabian WMF, Faber K (2010) Biocatalytic carboxylation. Chem Soc Rev 39:313–328CrossRefGoogle Scholar
  12. 12.
    Calvin M (1961) Nobel prize for chemistry: Prof. M. Calvin, For. Mem. R.S. Nature 192:799Google Scholar
  13. 13.
    Hartman FC, Harpel MR (1994) Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Annu Rev Biochem 63:197–234CrossRefGoogle Scholar
  14. 14.
    Evans MC, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55:928–934CrossRefGoogle Scholar
  15. 15.
    Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450CrossRefGoogle Scholar
  16. 16.
    Drake HL, Goßner AS, Daniel SL (2008) Old acetogens, new light. In: Wiegel, J (ed.) Incredible anaerobes. Ann N Y Acad Sci, 1125:100–128Google Scholar
  17. 17.
    Ragsdale SW, Pierce E (2008) Acetogenesis and Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898CrossRefGoogle Scholar
  18. 18.
    Herter S, Fuchs G, Bacher A, Eisenreich W (2002) A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. J Biol Chem 277:20277–20283CrossRefGoogle Scholar
  19. 19.
    Alber B, Olinger M, Rieder A, Kockelkorn D, Jobst B, Hugler M, Fuchs G (2006) Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in Archaeal Metallosphaera and Sulfolobus spp. J Bacteriol 188:8551–8559CrossRefGoogle Scholar
  20. 20.
    Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxy-butyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786CrossRefGoogle Scholar
  21. 21.
    Huber H, Gallenberger M, Jahn U, Eylert E, Berg IA, Kockelkorn D, Eisenreich W, Fuchs G (2008) A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignococcus hospitalis. Proc Natl Acad Sci USA 105:7851–7856CrossRefGoogle Scholar
  22. 22.
    Erb TJ, Berg IA, Brecht V, Muller M, Fuchs G, Alber BE (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci USA 104:10631–10636CrossRefGoogle Scholar
  23. 23.
    Andersson I, Backlund A (2008) Structure and function of Rubisco. Plant Physiol Biochem 46:275–291CrossRefGoogle Scholar
  24. 24.
    Bowyer JR, Leegood RC (1997) Photosynthesis. In: Dey P, Harborne J (eds) Plant biochemistry. Academic, New York, pp 49–110CrossRefGoogle Scholar
  25. 25.
    Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244CrossRefGoogle Scholar
  26. 26.
    Schneider G, Lindqvist Y, Branden C-I (1992) RUBISCO: structure and mechanism. Annu Rev Biophys Biomol Struct 21:119–143CrossRefGoogle Scholar
  27. 27.
    Phillips R, Milo R (2009) A feeling for the numbers in biology. Proc Natl Acad Sci USA 106:21465–21471CrossRefGoogle Scholar
  28. 28.
    Buchanan BB, Arnon DI (1990) A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res 24:47–53CrossRefGoogle Scholar
  29. 29.
    Aoshima M (2007) Novel enzyme reactions related to the tricarboxylic acid cycle: phylogenetic/functional implications and biotechnological applications. Appl Microbiol Biotechnol 75:249–255CrossRefGoogle Scholar
  30. 30.
    Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936CrossRefGoogle Scholar
  31. 31.
    Boyd JM, Ensign SA (2005) ATP-dependent enolization of acetone by acetone carboxylase from Rhodobacter capsulatus. Biochemistry 44:8543–8553CrossRefGoogle Scholar
  32. 32.
    Mai XH, Adams MWW (1996) Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J Bacteriol 178:5890–5896Google Scholar
  33. 33.
    Ragsdale SW (2003) Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem Rev 103:2333–2346CrossRefGoogle Scholar
  34. 34.
    Schut GJ, Menon AL, Adams MWW (2001) 2-Keto acid oxidoreductases from Pyrococcus furiosus and Thermococcus litoralis. Methods Enzymol 331:144–158CrossRefGoogle Scholar
  35. 35.
    Ragsdale SW (2007) Nickel and the carbon cycle. J Inorg Biochem 101:1657–1666CrossRefGoogle Scholar
  36. 36.
    Ragsdale SW (2004) Life with carbon monoxide. Crit Rev Biochem Mol Biol 39:165–195CrossRefGoogle Scholar
  37. 37.
    Lindahl PA, Chang B (2001) The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31:403–434CrossRefGoogle Scholar
  38. 38.
    Hugler M, Krieger RS, Jahn M, Fuchs G (2003) Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula. Eur J Biochem 270:736–744CrossRefGoogle Scholar
  39. 39.
    Jahn U, Huber H, Eisenreich W, Hugler M, Fuchs G (2007) Insights into the autotrophic CO2 fixation pathway of the Archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism. J Bacteriol 189:4108–4119CrossRefGoogle Scholar
  40. 40.
    Aresta M, Forti G (eds) (1987) Carbon dioxide as a source of carbon. ElsevierGoogle Scholar
  41. 41.
    Aresta M, Schloss JV (eds) (1990) Enzymatic and model reaction for carbon dioxide carboxylation and reduction reactions. ElsevierGoogle Scholar
  42. 42.
    Aresta M, Quaranta E, Tommasi I, Giannoccaro P, Ciccarese A (1995) Enzymatic versus chemical carbon dioxide utilisation. Part I. The role of metal centres in carboxylation reactions. Gazz Chim Ital 125:509–538Google Scholar
  43. 43.
    Kolbe H (1860) Ueber Synthese der Salicylsäure Justus Liebigs. Annalen der Chemie 113(1):125–127CrossRefGoogle Scholar
  44. 44.
    Ota K (1974) Conversion reaction of alkali 4-hydroxyisophthalates to hydroxybenzoic acids. Bull Chem Soc Jpn 47:2343–2344CrossRefGoogle Scholar
  45. 45.
    Fumasoni S, Pochetti F, Roberti G (1974) Simultaneous manufacture of urea and glycol, Ger Offen 2,318,327, CA, 80, 14593jGoogle Scholar
  46. 46.
    Fromm D, Luetzow D (1979) Modern methods of industrial chemistry: urea. Chem Unserer Zeit 13:78–81CrossRefGoogle Scholar
  47. 47.
    Aresta M, Tommasi I, Dileo C, Dibenedetto A, Narracci M (2001) Biotechnological synthesis of 4-OH benzoate mediated by a phenylphosphate-carboxylase enzyme 221st National Meeting, American Chemical Society, San Diego, CA, April 1–5, Inorganic division, Abstract n° 581Google Scholar
  48. 48.
    Lack A, Fuchs G, Aresta M, Tommasi I (1991) Catalytic properties of phenol carboxylase of Pseudomonas aeruginosa (strain from Venice lagoon). Eur J Biochem 197:473CrossRefGoogle Scholar
  49. 49.
    Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149:136–141CrossRefGoogle Scholar
  50. 50.
    Schnell S, Bak F, Pfenng N (1989) Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of desulfobacterium aniline. Arch Microbiol 152:556–563CrossRefGoogle Scholar
  51. 51.
    Aresta M, Dibenedetto A (2002) Development of environmentally friendly syntheses: use of enzymes and biomimetic systems for the direct carboxylation of organic substrates. Rev Mol Biotechnol 90:113–128CrossRefGoogle Scholar
  52. 52.
    Dibenedetto A, Lo Noce R, Pastore C, Aresta M, Fragale C (2006) First in vitro use of the phenylphosphate carboxylase enzyme in supercritical CO2 for the selective carboxylation of phenol to 4-hydroxybenzoic acid. Environ Chem Lett 3:145–148CrossRefGoogle Scholar
  53. 53.
    Ding B, Schmeling S, Fuchs G (2008) Anaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica – a result of promiscuous enzymes and regulators. J Bacteriol 190:1620–1630CrossRefGoogle Scholar
  54. 54.
    Zhang X, Wiegel J (1994) Reversible conversion of 4-hydroxybenzoate and phenol by Clostridium hydroxybenzoicum. Appl Environ Microbiol 60:4182–4185Google Scholar
  55. 55.
    He Z, Wiegel J (1995) Purification and characterization of an oxygen-sensitive reversible 4-hydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. Eur J Biochem 229:77–82CrossRefGoogle Scholar
  56. 56.
    He Z, Wiegel J (1996) Purification and characterization of an oxygen-sensitive reversible 3,4-dihydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. J Bacteriol 178:3539–4343Google Scholar
  57. 57.
    Miyazaki M, Shibue M, Ogino K, Nakamura H, Maeda H (2001) Enzymatic synthesis of pyruvic acid from acetaldehyde and carbon dioxide. Chem Commun 1800–1801Google Scholar
  58. 58.
    Wieser M, Yoshida T, Nagasawa T (2001) Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase and its application. J Mol Catal B Enzym 11:179–184CrossRefGoogle Scholar
  59. 59.
    Omura H, Wieser M, Nagasawa T (1998) Pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910, an organic-acid-requiring enzyme. Eur J Biochem 253:480–484CrossRefGoogle Scholar
  60. 60.
    Wuensch C, Glueck SM, Gross J, Koszelewski D, Schober M, Faber K (2012) Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives. Org Lett 14(8):1974–1977CrossRefGoogle Scholar
  61. 61.
    Yoshida T, Fujita K, Nagasawa T (2002) Novel reversible indole-3-carboxylate decarboxylase catalyzing nonoxidative decarboxylation. Biosci Biotechnol Biochem 66(11):2388–2394CrossRefGoogle Scholar
  62. 62.
    Rodriguez H, Landete JM, Curiel JA, de las Rivas B, Mancheno JM, Munoz R (2008) Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T). J Agric Food Chem 56:3068–3072CrossRefGoogle Scholar
  63. 63.
    Cavin J-F, Barthelmebs L, Divies C (1997) Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization. Appl Environ Microbiol 63:1939–1944Google Scholar
  64. 64.
    Gu W, Li X, Huang J, Duan Y, Meng Z, Zhang K-Q, Yang J (2011) Cloning, sequencing, and overexpression in Escherichia coli of the Enterobacter sp. Px6-4 gene for ferulic acid decarboxylase. Appl Microbiol Biotechnol 89:1797–1805CrossRefGoogle Scholar
  65. 65.
    Prim N, Pastor FIJ, Diaz P (2003) Biochemical studies on cloned Bacillus sp. BP-7 phenolic acid decarboxylase PadA. Appl Microbiol Biotechnol 63:51–56CrossRefGoogle Scholar
  66. 66.
    Goto M, Hayashi H, Miyahara I, Hirotsu K, Yoshida M, Oikawa T (2006) Crystal structures of nonoxidative Zn-dependent 2,6-dihydroxybenzoate (γ-resorcylate) decarboxylase from Rhizobium sp. strain Mtp-10005. J Biol Chem 281:34365–34373CrossRefGoogle Scholar
  67. 67.
    Matte A, Grosse S, Bergeron H, Abokitse K, Lau PCK (2010) Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme. Acta Crystallogr F66:1407–1414Google Scholar
  68. 68.
    Gu W, Yang J, Lou Z, Liang L, Sun Y, Huang J, Li X, Cao Y, Meng Z, Zhang K-Q (2011) Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase) from Enterobacter sp. p x6–4. PLoS One 6(1):e16262. doi: 10.1371/journal.pone.0016262 CrossRefGoogle Scholar
  69. 69.
    Rodriguez H, Angulo I, de las Rivas B, Campillo N, Paez JA, Munoz R, Mancheno JM (2010) p-Coumaric acid decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism. Proteins 78:1662–1676Google Scholar
  70. 70.
    Swaving J, de Bont JAM (1998) Microbial transformation of epoxides. Enzym Microb Technol 22(1):19–26CrossRefGoogle Scholar
  71. 71.
    Allen JR, Ensign SA (1996) Carboxylation of epoxides to beta-keto acids in cell extracts of Xanthobacter strain Py2. J Bacteriol 178(5):1469–1472Google Scholar
  72. 72.
    Volbeda A, Fontecilla-Camps JC (2005) Structural bases for the catalytic mechanism of Ni-containing carbon monoxide dehydrogenases. Dalton Trans 3443–3450Google Scholar
  73. 73.
    Park SW, Taeksun S, Kim SY, Kim E, Oh J, Eom C, Kim YM (2007) Carbon monoxide dehydrogenase in mycobacteria possesses a nitric oxide dehydrogenase activity. Biochem Biophys Res Commun 362:449–453CrossRefGoogle Scholar
  74. 74.
    Dobbek H, Gremer L, Meyer O, Huber R (1999) Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc Natl Acad Sci USA 96(16):8884–8889CrossRefGoogle Scholar
  75. 75.
    Kato N, Sahm H, Wagner F (1979) Steady-state kinetics of formaldehyde dehydrogenase and formate dehydrogenase from a methanol-utilizing yeast, Candida boidinii. Biochim Biophys Acta Enzymol 566:12–20CrossRefGoogle Scholar
  76. 76.
    Ljungdahl LG, Wood HG (1969) Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu Rev Microbiol 23:515–538CrossRefGoogle Scholar
  77. 77.
    Lu Y, Jiang ZY, Xu SW, Wu H (2006) Efficient conversion of CO2 to formic acid by formate dehydrogenase immobilized in a novel alginate-silica hybrid gel. Catal Today 115:263–268CrossRefGoogle Scholar
  78. 78.
    Miyatani R, Amao Y (2002) Bio-CO2 fixation with formate dehydrogenase from Saccharomyces cerevisiae and water-soluble zinc porphyrin by visible light. Biotechnol Lett 24:1931–1934CrossRefGoogle Scholar
  79. 79.
    Parkinson BA, Weaver PF (1984) Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309:148–149CrossRefGoogle Scholar
  80. 80.
    Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA 105:10654–10658CrossRefGoogle Scholar
  81. 81.
    Ruschig U, Müller U, Willnow P, Höpner T (1976) CO2 reduction to formate by NADH catalyzed by formate dehydrogenase from Pseudomonas oxalaticus. Eur J Biochem 70:325–330CrossRefGoogle Scholar
  82. 82.
    Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308CrossRefGoogle Scholar
  83. 83.
    Kraulis K (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950CrossRefGoogle Scholar
  84. 84.
    Bacon DJ, Anderson WF (1988) A fast algorithm for rendering space-filling molecule pictures. J Mol Graph 6:219–220CrossRefGoogle Scholar
  85. 85.
    Merritt EA, Murphy MEP (1994) Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D50:869–873Google Scholar
  86. 86.
    Tsuru D (1979) Formaldehyde dehydrogenase from Pseudomonas putida. Purification and some properties. J Biochem 85(5):1165–1172Google Scholar
  87. 87.
    Tanaka N, Kusakabe Y, Ito K, Yoshimoto T, Nakamura KT (2002) Crystal structure of formaldehyde dehydrogenase from Pseudomonas putida: the structural origin of the tightly bound cofactor in nicotinoprotein dehydrogenases. J Mol Biol 324:519–533CrossRefGoogle Scholar
  88. 88.
    Negelein E, Wulff HJ (1937) Diphosphopyridinproteid ackohol, acetaldehyd. Biochem Z 293:351–389Google Scholar
  89. 89.
    Theorell H, McKEE JS (1961) Mechanism of action of liver alcohol dehydrogenase. Nature 192(4797):47–50CrossRefGoogle Scholar
  90. 90.
    Jörnvall H, Harris JI (1970) Horse liver alcohol dehydrogenase. On the primary structure of the ethanol-active isoenzyme. Eur J Biochem 13(3):565–576CrossRefGoogle Scholar
  91. 91.
    Brändén CI, Eklund H, Nordström B, Boiwe T, Söderlund G, Zeppezauer E, Ohlsson I, Akeson A (1973) Structure of liver alcohol dehydrogenase at 2.9-Angstrom resolution. Proc Natl Acad Sci USA 70(8):2439–2442CrossRefGoogle Scholar
  92. 92.
    Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJG, Moura I, Romão MJ (2002) Gene sequence and the 1.8 Å crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Structure 10:1261–1272CrossRefGoogle Scholar
  93. 93.
    Kletzin A, Adams MWW (1996) Tungsten in biological systems. FEMS Microbiol Rev 18:5–63CrossRefGoogle Scholar
  94. 94.
    de Bok FAM, Hagedoorn P-L, Silva PJ, Hagen WR, Schiltz E, Fritsche K, Stams AJM (2003) Two W-containing formate dehydrogenases (CO2-reductases)involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. Eur J Biochem 270:2476–2485CrossRefGoogle Scholar
  95. 95.
    Aresta M (2010) CO2 enzymatic carboxylation and reduction to methanol. International Scientific Forum on CO 2 chemistry and biochemistry, CO2 Challenge Forum, LyonGoogle Scholar
  96. 96.
    Kima S, Kimb MK, Leeb SH, Yoonc S, Junga K-D (2014) Conversion of CO2- to formate in an electro-enzymatic cell using Candida boidinii formate dehydrogenase. J Mol Catal B Enzym 102:9–15CrossRefGoogle Scholar
  97. 97.
    Jiang Z, Xu S, Wu H (2003) Novel conversion of carbon dioxide to methanol catalyzed by sol-gel immobilized dehydrogenases. International conference on carbon dioxide utilization ICCDU VII, Seoul-KoreaGoogle Scholar
  98. 98.
    Xu S, Lu Y, Li J, Jiang Z, Wu H (2006) Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases Co-encapsulated in an alginate-silica (ALG–SiO2) hybrid gel. Ind Eng Chem Res 45:4567–4573CrossRefGoogle Scholar
  99. 99.
    Dibenedetto A, Stufano P, Baran T, Macyk W, Aresta M (2011) Hybrid technologies for an enhanced carbon recycling based on enzymatic CO2 reduction to methanol in water. International conference on carbon dioxide utilization ICCDU XI, Dijon, FRGoogle Scholar
  100. 100.
    Dibenedetto A, Angelini A, Aresta M, Macyk W, Baran T (2013) Nanomaterials as photocatalysts for the CO2 reduction to methanol in water. International conference on carbon dioxide utilization, ICCDU XII, Alexandria, VAGoogle Scholar
  101. 101.
    Dibenedetto A, Baran T, Macyk W, Aresta M (2013) Photonanomaterials for CO2 reduction to methanol. 245th ACS national meeting, New OrleansGoogle Scholar
  102. 102.
    Dibenedetto A, Stufano P, Angelini A, Fragale C, Aresta M, Costa M (2012) Hybrid technologies for an enhanced carbon recycling based on enzymatic CO2 reduction to methanol in water: chemical and photochemical NADH regeneration. ChemSusChem 5:373–378CrossRefGoogle Scholar
  103. 103.
    Cazelles R, Drone J, Fajula F, Ersen O, Moldovan S, Galarneau A (2013) Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules. New J Chem 37:3721–3730CrossRefGoogle Scholar
  104. 104.
    Song J, Kim Y, Lim M, Lee H, Lee JI, Shin W (2011) Microbes as electrochemical CO2 conversion catalysts. ChemSusChem 4:587–590CrossRefGoogle Scholar
  105. 105.
    Aresta M, Dibenedetto A, Baran T, Angelini A, Łabuz P, Macyk W (2014) An integrated photocatalytic-enzymatic system for the reduction of CO2 to methanol in bio-glycerol-water. Beilstein J Org Chem 10:2556–2565CrossRefGoogle Scholar
  106. 106.
    Aresta M, Dibenedetto A, Baran T, Macyk W (2013) Patent application MI2013A001135Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chemical and Biomolecular Engineering DepartmentNUSSingaporeSingapore
  2. 2.CIRCCPisaItaly
  3. 3.Department of Chemistry and CIRCCUniversity of BariBariItaly

Personalised recommendations