Skip to main content

Enzymatic Conversion of CO2 (Carboxylation Reactions and Reduction to Energy-Rich C1 Molecules)

  • Chapter

Abstract

This chapter deals with the enzymatic conversion of CO2. It covers the two aspects of the fixation of the entire CO2 molecule into substrates (carboxylation) and the reduction of CO2 to other C1 (or C2) energy-richer molecules. The known mechanisms are discussed and barriers to exploitation at the industrial level highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tong X, El-Zahab B, Zhao X, Liu Y, Wang P (2011) Enzymatic synthesis of L-lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle. Biotechnol Bioeng 108(2):465–469

    Article  CAS  Google Scholar 

  2. Park SW, Joo OS, Jung KD, Kim H, Han SH (2001) Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process. Appl Catal A Gen 211:81–90

    Article  CAS  Google Scholar 

  3. Azuma M, Hashimoto K, Hiromoto M (1990) Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc 137:1772–1778

    Article  CAS  Google Scholar 

  4. Subrahmanyam M, Kaneco S, Alonso-Vante N (1999) A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Appl Catal B Environ 23(2–3):169–174

    Article  CAS  Google Scholar 

  5. Kuwabata S, Nishida K, Tsuda R, Inoue H, Yoneyama H (1994) Photochemical reduction of carbon dioxide to methanol using ZnS microcrystallite as a photocatalyst in the presence of methanol dehydrogenase. J Electrochem Soc 141(6):1498–1503

    Article  CAS  Google Scholar 

  6. Aresta M, Quaranta E, Liberio R, Dileo C, Tommasi I (1998) Enzymatic synthesis of 4-OH-benzoic acid from phenol and CO2: the first example of a biotechnological application of a carboxylase enzyme. Tetrahedron 54(30):8841–8846

    Article  CAS  Google Scholar 

  7. Dave BC, Obert R (1999) Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices. J Am Chem Soc 121:12192–12193

    Article  Google Scholar 

  8. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  Google Scholar 

  9. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  Google Scholar 

  10. Hugler M, Huber H, Stetter KO, Fuchs G (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173

    Google Scholar 

  11. Glueck SM, Gumus S, Fabian WMF, Faber K (2010) Biocatalytic carboxylation. Chem Soc Rev 39:313–328

    Article  CAS  Google Scholar 

  12. Calvin M (1961) Nobel prize for chemistry: Prof. M. Calvin, For. Mem. R.S. Nature 192:799

    Google Scholar 

  13. Hartman FC, Harpel MR (1994) Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Annu Rev Biochem 63:197–234

    Article  CAS  Google Scholar 

  14. Evans MC, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55:928–934

    Article  CAS  Google Scholar 

  15. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450

    Article  CAS  Google Scholar 

  16. Drake HL, Goßner AS, Daniel SL (2008) Old acetogens, new light. In: Wiegel, J (ed.) Incredible anaerobes. Ann N Y Acad Sci, 1125:100–128

    Google Scholar 

  17. Ragsdale SW, Pierce E (2008) Acetogenesis and Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898

    Article  CAS  Google Scholar 

  18. Herter S, Fuchs G, Bacher A, Eisenreich W (2002) A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. J Biol Chem 277:20277–20283

    Article  CAS  Google Scholar 

  19. Alber B, Olinger M, Rieder A, Kockelkorn D, Jobst B, Hugler M, Fuchs G (2006) Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in Archaeal Metallosphaera and Sulfolobus spp. J Bacteriol 188:8551–8559

    Article  CAS  Google Scholar 

  20. Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxy-butyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786

    Article  CAS  Google Scholar 

  21. Huber H, Gallenberger M, Jahn U, Eylert E, Berg IA, Kockelkorn D, Eisenreich W, Fuchs G (2008) A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignococcus hospitalis. Proc Natl Acad Sci USA 105:7851–7856

    Article  CAS  Google Scholar 

  22. Erb TJ, Berg IA, Brecht V, Muller M, Fuchs G, Alber BE (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci USA 104:10631–10636

    Article  CAS  Google Scholar 

  23. Andersson I, Backlund A (2008) Structure and function of Rubisco. Plant Physiol Biochem 46:275–291

    Article  CAS  Google Scholar 

  24. Bowyer JR, Leegood RC (1997) Photosynthesis. In: Dey P, Harborne J (eds) Plant biochemistry. Academic, New York, pp 49–110

    Chapter  Google Scholar 

  25. Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244

    Article  CAS  Google Scholar 

  26. Schneider G, Lindqvist Y, Branden C-I (1992) RUBISCO: structure and mechanism. Annu Rev Biophys Biomol Struct 21:119–143

    Article  CAS  Google Scholar 

  27. Phillips R, Milo R (2009) A feeling for the numbers in biology. Proc Natl Acad Sci USA 106:21465–21471

    Article  CAS  Google Scholar 

  28. Buchanan BB, Arnon DI (1990) A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res 24:47–53

    Article  CAS  Google Scholar 

  29. Aoshima M (2007) Novel enzyme reactions related to the tricarboxylic acid cycle: phylogenetic/functional implications and biotechnological applications. Appl Microbiol Biotechnol 75:249–255

    Article  CAS  Google Scholar 

  30. Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936

    Article  CAS  Google Scholar 

  31. Boyd JM, Ensign SA (2005) ATP-dependent enolization of acetone by acetone carboxylase from Rhodobacter capsulatus. Biochemistry 44:8543–8553

    Article  CAS  Google Scholar 

  32. Mai XH, Adams MWW (1996) Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J Bacteriol 178:5890–5896

    CAS  Google Scholar 

  33. Ragsdale SW (2003) Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem Rev 103:2333–2346

    Article  CAS  Google Scholar 

  34. Schut GJ, Menon AL, Adams MWW (2001) 2-Keto acid oxidoreductases from Pyrococcus furiosus and Thermococcus litoralis. Methods Enzymol 331:144–158

    Article  CAS  Google Scholar 

  35. Ragsdale SW (2007) Nickel and the carbon cycle. J Inorg Biochem 101:1657–1666

    Article  CAS  Google Scholar 

  36. Ragsdale SW (2004) Life with carbon monoxide. Crit Rev Biochem Mol Biol 39:165–195

    Article  CAS  Google Scholar 

  37. Lindahl PA, Chang B (2001) The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31:403–434

    Article  CAS  Google Scholar 

  38. Hugler M, Krieger RS, Jahn M, Fuchs G (2003) Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula. Eur J Biochem 270:736–744

    Article  CAS  Google Scholar 

  39. Jahn U, Huber H, Eisenreich W, Hugler M, Fuchs G (2007) Insights into the autotrophic CO2 fixation pathway of the Archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism. J Bacteriol 189:4108–4119

    Article  CAS  Google Scholar 

  40. Aresta M, Forti G (eds) (1987) Carbon dioxide as a source of carbon. Elsevier

    Google Scholar 

  41. Aresta M, Schloss JV (eds) (1990) Enzymatic and model reaction for carbon dioxide carboxylation and reduction reactions. Elsevier

    Google Scholar 

  42. Aresta M, Quaranta E, Tommasi I, Giannoccaro P, Ciccarese A (1995) Enzymatic versus chemical carbon dioxide utilisation. Part I. The role of metal centres in carboxylation reactions. Gazz Chim Ital 125:509–538

    CAS  Google Scholar 

  43. Kolbe H (1860) Ueber Synthese der Salicylsäure Justus Liebigs. Annalen der Chemie 113(1):125–127

    Article  Google Scholar 

  44. Ota K (1974) Conversion reaction of alkali 4-hydroxyisophthalates to hydroxybenzoic acids. Bull Chem Soc Jpn 47:2343–2344

    Article  CAS  Google Scholar 

  45. Fumasoni S, Pochetti F, Roberti G (1974) Simultaneous manufacture of urea and glycol, Ger Offen 2,318,327, CA, 80, 14593j

    Google Scholar 

  46. Fromm D, Luetzow D (1979) Modern methods of industrial chemistry: urea. Chem Unserer Zeit 13:78–81

    Article  CAS  Google Scholar 

  47. Aresta M, Tommasi I, Dileo C, Dibenedetto A, Narracci M (2001) Biotechnological synthesis of 4-OH benzoate mediated by a phenylphosphate-carboxylase enzyme 221st National Meeting, American Chemical Society, San Diego, CA, April 1–5, Inorganic division, Abstract n° 581

    Google Scholar 

  48. Lack A, Fuchs G, Aresta M, Tommasi I (1991) Catalytic properties of phenol carboxylase of Pseudomonas aeruginosa (strain from Venice lagoon). Eur J Biochem 197:473

    Article  CAS  Google Scholar 

  49. Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149:136–141

    Article  CAS  Google Scholar 

  50. Schnell S, Bak F, Pfenng N (1989) Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of desulfobacterium aniline. Arch Microbiol 152:556–563

    Article  CAS  Google Scholar 

  51. Aresta M, Dibenedetto A (2002) Development of environmentally friendly syntheses: use of enzymes and biomimetic systems for the direct carboxylation of organic substrates. Rev Mol Biotechnol 90:113–128

    Article  CAS  Google Scholar 

  52. Dibenedetto A, Lo Noce R, Pastore C, Aresta M, Fragale C (2006) First in vitro use of the phenylphosphate carboxylase enzyme in supercritical CO2 for the selective carboxylation of phenol to 4-hydroxybenzoic acid. Environ Chem Lett 3:145–148

    Article  CAS  Google Scholar 

  53. Ding B, Schmeling S, Fuchs G (2008) Anaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica – a result of promiscuous enzymes and regulators. J Bacteriol 190:1620–1630

    Article  CAS  Google Scholar 

  54. Zhang X, Wiegel J (1994) Reversible conversion of 4-hydroxybenzoate and phenol by Clostridium hydroxybenzoicum. Appl Environ Microbiol 60:4182–4185

    CAS  Google Scholar 

  55. He Z, Wiegel J (1995) Purification and characterization of an oxygen-sensitive reversible 4-hydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. Eur J Biochem 229:77–82

    Article  CAS  Google Scholar 

  56. He Z, Wiegel J (1996) Purification and characterization of an oxygen-sensitive reversible 3,4-dihydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. J Bacteriol 178:3539–4343

    CAS  Google Scholar 

  57. Miyazaki M, Shibue M, Ogino K, Nakamura H, Maeda H (2001) Enzymatic synthesis of pyruvic acid from acetaldehyde and carbon dioxide. Chem Commun 1800–1801

    Google Scholar 

  58. Wieser M, Yoshida T, Nagasawa T (2001) Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase and its application. J Mol Catal B Enzym 11:179–184

    Article  CAS  Google Scholar 

  59. Omura H, Wieser M, Nagasawa T (1998) Pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910, an organic-acid-requiring enzyme. Eur J Biochem 253:480–484

    Article  CAS  Google Scholar 

  60. Wuensch C, Glueck SM, Gross J, Koszelewski D, Schober M, Faber K (2012) Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives. Org Lett 14(8):1974–1977

    Article  CAS  Google Scholar 

  61. Yoshida T, Fujita K, Nagasawa T (2002) Novel reversible indole-3-carboxylate decarboxylase catalyzing nonoxidative decarboxylation. Biosci Biotechnol Biochem 66(11):2388–2394

    Article  CAS  Google Scholar 

  62. Rodriguez H, Landete JM, Curiel JA, de las Rivas B, Mancheno JM, Munoz R (2008) Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T). J Agric Food Chem 56:3068–3072

    Article  CAS  Google Scholar 

  63. Cavin J-F, Barthelmebs L, Divies C (1997) Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization. Appl Environ Microbiol 63:1939–1944

    CAS  Google Scholar 

  64. Gu W, Li X, Huang J, Duan Y, Meng Z, Zhang K-Q, Yang J (2011) Cloning, sequencing, and overexpression in Escherichia coli of the Enterobacter sp. Px6-4 gene for ferulic acid decarboxylase. Appl Microbiol Biotechnol 89:1797–1805

    Article  CAS  Google Scholar 

  65. Prim N, Pastor FIJ, Diaz P (2003) Biochemical studies on cloned Bacillus sp. BP-7 phenolic acid decarboxylase PadA. Appl Microbiol Biotechnol 63:51–56

    Article  CAS  Google Scholar 

  66. Goto M, Hayashi H, Miyahara I, Hirotsu K, Yoshida M, Oikawa T (2006) Crystal structures of nonoxidative Zn-dependent 2,6-dihydroxybenzoate (γ-resorcylate) decarboxylase from Rhizobium sp. strain Mtp-10005. J Biol Chem 281:34365–34373

    Article  CAS  Google Scholar 

  67. Matte A, Grosse S, Bergeron H, Abokitse K, Lau PCK (2010) Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme. Acta Crystallogr F66:1407–1414

    Google Scholar 

  68. Gu W, Yang J, Lou Z, Liang L, Sun Y, Huang J, Li X, Cao Y, Meng Z, Zhang K-Q (2011) Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase) from Enterobacter sp. p x6–4. PLoS One 6(1):e16262. doi:10.1371/journal.pone.0016262

    Article  CAS  Google Scholar 

  69. Rodriguez H, Angulo I, de las Rivas B, Campillo N, Paez JA, Munoz R, Mancheno JM (2010) p-Coumaric acid decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism. Proteins 78:1662–1676

    CAS  Google Scholar 

  70. Swaving J, de Bont JAM (1998) Microbial transformation of epoxides. Enzym Microb Technol 22(1):19–26

    Article  CAS  Google Scholar 

  71. Allen JR, Ensign SA (1996) Carboxylation of epoxides to beta-keto acids in cell extracts of Xanthobacter strain Py2. J Bacteriol 178(5):1469–1472

    CAS  Google Scholar 

  72. Volbeda A, Fontecilla-Camps JC (2005) Structural bases for the catalytic mechanism of Ni-containing carbon monoxide dehydrogenases. Dalton Trans 3443–3450

    Google Scholar 

  73. Park SW, Taeksun S, Kim SY, Kim E, Oh J, Eom C, Kim YM (2007) Carbon monoxide dehydrogenase in mycobacteria possesses a nitric oxide dehydrogenase activity. Biochem Biophys Res Commun 362:449–453

    Article  CAS  Google Scholar 

  74. Dobbek H, Gremer L, Meyer O, Huber R (1999) Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc Natl Acad Sci USA 96(16):8884–8889

    Article  CAS  Google Scholar 

  75. Kato N, Sahm H, Wagner F (1979) Steady-state kinetics of formaldehyde dehydrogenase and formate dehydrogenase from a methanol-utilizing yeast, Candida boidinii. Biochim Biophys Acta Enzymol 566:12–20

    Article  CAS  Google Scholar 

  76. Ljungdahl LG, Wood HG (1969) Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu Rev Microbiol 23:515–538

    Article  CAS  Google Scholar 

  77. Lu Y, Jiang ZY, Xu SW, Wu H (2006) Efficient conversion of CO2 to formic acid by formate dehydrogenase immobilized in a novel alginate-silica hybrid gel. Catal Today 115:263–268

    Article  CAS  Google Scholar 

  78. Miyatani R, Amao Y (2002) Bio-CO2 fixation with formate dehydrogenase from Saccharomyces cerevisiae and water-soluble zinc porphyrin by visible light. Biotechnol Lett 24:1931–1934

    Article  CAS  Google Scholar 

  79. Parkinson BA, Weaver PF (1984) Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309:148–149

    Article  CAS  Google Scholar 

  80. Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA 105:10654–10658

    Article  CAS  Google Scholar 

  81. Ruschig U, Müller U, Willnow P, Höpner T (1976) CO2 reduction to formate by NADH catalyzed by formate dehydrogenase from Pseudomonas oxalaticus. Eur J Biochem 70:325–330

    Article  CAS  Google Scholar 

  82. Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308

    Article  CAS  Google Scholar 

  83. Kraulis K (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  84. Bacon DJ, Anderson WF (1988) A fast algorithm for rendering space-filling molecule pictures. J Mol Graph 6:219–220

    Article  Google Scholar 

  85. Merritt EA, Murphy MEP (1994) Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D50:869–873

    CAS  Google Scholar 

  86. Tsuru D (1979) Formaldehyde dehydrogenase from Pseudomonas putida. Purification and some properties. J Biochem 85(5):1165–1172

    Google Scholar 

  87. Tanaka N, Kusakabe Y, Ito K, Yoshimoto T, Nakamura KT (2002) Crystal structure of formaldehyde dehydrogenase from Pseudomonas putida: the structural origin of the tightly bound cofactor in nicotinoprotein dehydrogenases. J Mol Biol 324:519–533

    Article  CAS  Google Scholar 

  88. Negelein E, Wulff HJ (1937) Diphosphopyridinproteid ackohol, acetaldehyd. Biochem Z 293:351–389

    CAS  Google Scholar 

  89. Theorell H, McKEE JS (1961) Mechanism of action of liver alcohol dehydrogenase. Nature 192(4797):47–50

    Article  CAS  Google Scholar 

  90. Jörnvall H, Harris JI (1970) Horse liver alcohol dehydrogenase. On the primary structure of the ethanol-active isoenzyme. Eur J Biochem 13(3):565–576

    Article  Google Scholar 

  91. Brändén CI, Eklund H, Nordström B, Boiwe T, Söderlund G, Zeppezauer E, Ohlsson I, Akeson A (1973) Structure of liver alcohol dehydrogenase at 2.9-Angstrom resolution. Proc Natl Acad Sci USA 70(8):2439–2442

    Article  Google Scholar 

  92. Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJG, Moura I, Romão MJ (2002) Gene sequence and the 1.8 Å crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Structure 10:1261–1272

    Article  CAS  Google Scholar 

  93. Kletzin A, Adams MWW (1996) Tungsten in biological systems. FEMS Microbiol Rev 18:5–63

    Article  CAS  Google Scholar 

  94. de Bok FAM, Hagedoorn P-L, Silva PJ, Hagen WR, Schiltz E, Fritsche K, Stams AJM (2003) Two W-containing formate dehydrogenases (CO2-reductases)involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. Eur J Biochem 270:2476–2485

    Article  Google Scholar 

  95. Aresta M (2010) CO2 enzymatic carboxylation and reduction to methanol. International Scientific Forum on CO 2 chemistry and biochemistry, CO2 Challenge Forum, Lyon

    Google Scholar 

  96. Kima S, Kimb MK, Leeb SH, Yoonc S, Junga K-D (2014) Conversion of CO2- to formate in an electro-enzymatic cell using Candida boidinii formate dehydrogenase. J Mol Catal B Enzym 102:9–15

    Article  Google Scholar 

  97. Jiang Z, Xu S, Wu H (2003) Novel conversion of carbon dioxide to methanol catalyzed by sol-gel immobilized dehydrogenases. International conference on carbon dioxide utilization ICCDU VII, Seoul-Korea

    Google Scholar 

  98. Xu S, Lu Y, Li J, Jiang Z, Wu H (2006) Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases Co-encapsulated in an alginate-silica (ALG–SiO2) hybrid gel. Ind Eng Chem Res 45:4567–4573

    Article  CAS  Google Scholar 

  99. Dibenedetto A, Stufano P, Baran T, Macyk W, Aresta M (2011) Hybrid technologies for an enhanced carbon recycling based on enzymatic CO2 reduction to methanol in water. International conference on carbon dioxide utilization ICCDU XI, Dijon, FR

    Google Scholar 

  100. Dibenedetto A, Angelini A, Aresta M, Macyk W, Baran T (2013) Nanomaterials as photocatalysts for the CO2 reduction to methanol in water. International conference on carbon dioxide utilization, ICCDU XII, Alexandria, VA

    Google Scholar 

  101. Dibenedetto A, Baran T, Macyk W, Aresta M (2013) Photonanomaterials for CO2 reduction to methanol. 245th ACS national meeting, New Orleans

    Google Scholar 

  102. Dibenedetto A, Stufano P, Angelini A, Fragale C, Aresta M, Costa M (2012) Hybrid technologies for an enhanced carbon recycling based on enzymatic CO2 reduction to methanol in water: chemical and photochemical NADH regeneration. ChemSusChem 5:373–378

    Article  CAS  Google Scholar 

  103. Cazelles R, Drone J, Fajula F, Ersen O, Moldovan S, Galarneau A (2013) Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules. New J Chem 37:3721–3730

    Article  CAS  Google Scholar 

  104. Song J, Kim Y, Lim M, Lee H, Lee JI, Shin W (2011) Microbes as electrochemical CO2 conversion catalysts. ChemSusChem 4:587–590

    Article  CAS  Google Scholar 

  105. Aresta M, Dibenedetto A, Baran T, Angelini A, Łabuz P, Macyk W (2014) An integrated photocatalytic-enzymatic system for the reduction of CO2 to methanol in bio-glycerol-water. Beilstein J Org Chem 10:2556–2565

    Article  CAS  Google Scholar 

  106. Aresta M, Dibenedetto A, Baran T, Macyk W (2013) Patent application MI2013A001135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aresta, M., Dibenedetto, A., Quaranta, E. (2016). Enzymatic Conversion of CO2 (Carboxylation Reactions and Reduction to Energy-Rich C1 Molecules). In: Reaction Mechanisms in Carbon Dioxide Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46831-9_9

Download citation

Publish with us

Policies and ethics