Advertisement

One- and Multi-electron Pathways for the Reduction of CO2 into C1 and C1+ Energy-Richer Molecules: Some Thermodynamic and Kinetic Facts

Chapter

Abstract

This chapter deals with the mechanism of reduction of “free” and coordinated CO2 by electron transfer. One-e and multi-e transfer pathways are compared energetically and their role in the conversion of CO2 into higher energy C1 or C1+-species is highlighted. The state of the knowledge is presented through the analysis of reference cases.

Keywords

Metal Centre Ancillary Ligand Faradaic Efficiency Sacrificial Reagent XANES Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89–99CrossRefGoogle Scholar
  2. 2.
    Schneider J, Jia H, Muckermana JT, Fujita E (2012) Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem Soc Rev 41:2036–2051CrossRefGoogle Scholar
  3. 3.
    Bolinger CM, Story N, Sullivam BP, Meyer TJ (1988) Electrocatalytic reduction of carbon dioxide by 2,2'-bipyridine complexes of rhodium and iridium. Inorg Chem 27:4582–4587CrossRefGoogle Scholar
  4. 4.
    Bruce MRM, Megehee E, Sullivan BP, Thorp H, O’Toole TR, Downard A, Meyer TJ (1988) Electrocatalytic reduction of carbon dioxide by associative activation. Organometallics 7:238–240CrossRefGoogle Scholar
  5. 5.
    Slater S, Wagenknecht JH (1984) Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl. J Am Chem Soc 106:5367–5368CrossRefGoogle Scholar
  6. 6.
    Tezuka M, Yajima T, Tsuchiya A, Matsumoto Y, Uchida Y, Hidai M (1982) Electroreduction of carbon dioxide catalyzed by iron-sulfur cluster compounds [Fe4S4(SR)4]2-. J Am Chem Soc 104:6834–6836CrossRefGoogle Scholar
  7. 7.
    Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M, Ishitani O (2005) Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium-rhenium bi- and tetranuclear complexes. Inorg Chem 44:2326–2336CrossRefGoogle Scholar
  8. 8.
    Gu J, Wuttig A, Krizan JW, Hu Y, Detweller ZM, Cava RJ, Bocarsly A (2013) Mg-doped CuFeO2 photocatalysts for photoelectrochemical reduction of carbon dioxide. J Phys Chem 117:12415–12422Google Scholar
  9. 9.
    Fisher B, Eisenberg R (1980) Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. J Am Chem Soc 102:7361–7363CrossRefGoogle Scholar
  10. 10.
    Beley M, Collin JP, Ruppert R, Sauvage JP (1984) Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of CO2 in water. J Chem Soc Chem Commun 1315–1316Google Scholar
  11. 11.
    Hammuche M, Lexa D, Momenteau M, Saveant JP (1991) Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron(“0”) porphyrins. Role of the addition of magnesium cations. J Am Chem Soc 113:8455–8466CrossRefGoogle Scholar
  12. 12.
    Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z (2002) Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J Phys Chem A 106:4772–4778CrossRefGoogle Scholar
  13. 13.
    Hawecker J, Lehn JM, Ziessel R (1984) Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2-bipyridine). J Chem Soc Chem Comm 328–330Google Scholar
  14. 14.
    Ishida H, Tanaka K, Tanaka T (1987) Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO-. Organometallics 6:181–186CrossRefGoogle Scholar
  15. 15.
    DuBois DL, Miedaner A, Haltiwanger RC (1991) Electrochemical reduction of carbon dioxide catalyzed by [Pd(triphosphine)(solvent)](BF4)2 complexes: synthetic and mechanistic studies. J Am Chem Soc 113:8753–8764CrossRefGoogle Scholar
  16. 16.
    Raebiger JW, Turner JW, Noll BC, Curtis CJ, Miedaner A, Cox B, DuBois DL (2006) Electrochemical reduction of CO2 to CO catalyzed by a bimetallic palladium complex. Organometallics 25:3345–3351CrossRefGoogle Scholar
  17. 17.
    Dubois DL (1997) Development of transition metal phosphine complexes as electrocatalysts for CO2 and CO reduction. Comments Inorg Chem 19:307–325CrossRefGoogle Scholar
  18. 18.
    DeLaet DL, Del Rosario R, Fanwick PE, Kubiak CP (1987) Carbon dioxide chemistry and electrochemistry of a binuclear cradle complex of nickel(0), Ni2(.mu-CNMe)(CNMe)2(PPh2CH2PPh2)2. J Am Chem Soc 109:754–758CrossRefGoogle Scholar
  19. 19.
    Morgenstern DA, Ferrence GM, Washington J, Henderson JI, Rosenhein L, Heise JD, Fanwick PE, Kubiak CP (1996) A class of halide-supported trinuclear nickel clusters [Ni3(m3-L)(m3-X)(m2-dppm)3]n + (L = I-, Br-, CO, CNR; X = I-, Br-; n = 0,1; dppm = Ph2PCH2PPh2): novel physical properties and the fermi resonance of symmetric m3-h1 bound isocyanide ligands. J Am Chem Soc 118:2198–2207CrossRefGoogle Scholar
  20. 20.
    Wittrig RE, Ferrence GM, Washington J, Kubiak CP (1998) Infrared spectroelectrochemical and electrochemical kinetics studies of the reaction of nickel cluster radicals [Ni32-dppm)33-L) (μ3I)]•(L = CNR, R = CH3, i-C3H7, C6H11, CH2C6H5, t-C4H9, 2,6-Me2C6H3; L = CO) with carbon dioxide. Inorg Chim Acta 270:111–117CrossRefGoogle Scholar
  21. 21.
    Ferrence GM, Fanwick PE, Kubiak CP (1996) A telluride capped trinuclear nickel cluster [Ni33-Te)2(μ-PPh2CH2PPh2)3]n+ with four accessible redox states (n=–1, 0, 1, 2). J Chem Soc Chem Commun 1575–1576Google Scholar
  22. 22.
    Haines RJ, Wittrig RE, Kubiak CP (1994) Electrocatalytic reduction of carbon dioxide by the binuclear copper complex [Cu2(6-(diphenylphosphino-2,2'-bipyridyl)2(MeCN)2][PF6]2. Inorg Chem 33:4723–4728CrossRefGoogle Scholar
  23. 23.
    Takeda H, Koike K, Inoue H, Ishitani O (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc 130:2023–2031CrossRefGoogle Scholar
  24. 24.
    Kumar B, Smieja JM, Kubiak CP (2010) Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J Phys Chem 114:14220–14223Google Scholar
  25. 25.
    Smieja JM, Sampson MD, Grice AF, Benson EE, Froehlich JD, Kubiak CP (2013) Manganese as substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg Chem 52:2484–2491CrossRefGoogle Scholar
  26. 26.
    Barton CE, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551CrossRefGoogle Scholar
  27. 27.
    Frese KW Jr, Canfield D (1984) Reduction of CO2 on n-GaAs electrodes and selective methanol synthesis. J Electrochem Soc 131:2518–2522CrossRefGoogle Scholar
  28. 28.
    Willner I, Maidan R, Mandler D, Durr H, Dorr G, Zengerle K (1987) Photosensitized reduction of CO2 to CH4 and H2 evolution in the presence of ruthenium and osmium colloids: strategies to design selectivity of products distribution. J Am Chem Soc 109:6080–6086CrossRefGoogle Scholar
  29. 29.
    Christophe J, Doneux T, Buess-Herman C (2012) Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper-alloys. Electrocatalysis 3:139–146CrossRefGoogle Scholar
  30. 30.
    Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839CrossRefGoogle Scholar
  31. 31.
    Stephen H, Stephen T (eds) (1963) Solubilities of inorganic and organic compounds, vol 1, Binary systems, Part II. Pergamon, Oxford, pp 1057–1076Google Scholar
  32. 32.
    Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of CO2 under high pressure on various electrodes in aqueous electrolytes. J Electroanal Chem 391:141–147CrossRefGoogle Scholar
  33. 33.
    Hara K, Kudo A, Sakata T, Watanabe M (1995) High efficiency electrochemical reduction of carbon dioxide under high pressure on a gas diffusion electrode containing Pt catalysts. J Electrochem Soc 142:L57–L59CrossRefGoogle Scholar
  34. 34.
    Amatore C, Savéant J-M (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J Am Chem Soc 103:5021–5023CrossRefGoogle Scholar
  35. 35.
    Gangi DA, Durand RR Jr (1986) Binding of carbon dioxide to cobalt and nickel tetra-aza macrocycles. J Chem Soc Chem Commun 697–699Google Scholar
  36. 36.
    Fujita E, Creutz N, Sutin N, Szalda DJ (1991) Carbon dioxide activation by cobalt(I) macrocycles: factors affecting carbon dioxide and carbon monoxide binding. J Am Chem Soc 113:343–353CrossRefGoogle Scholar
  37. 37.
    Fujita E, Szalda DJ, Creutz N, Sutin N (1988) Carbon dioxide activation: thermodynamics of carbon dioxide binding and the involvement of two cobalt centers in the reduction of carbon dioxide by a cobalt(I) macrocycle. J Am Chem Soc 110:4870–4871CrossRefGoogle Scholar
  38. 38.
    Ogata T, Yanagida S, Brunshwig BS, Fujita E (1995) Mechanistic and kinetic studies of cobalt macrocycles in a photochemical CO2 reduction system: evidence of Co-CO2 adducts as intermediates. J Am Chem Soc 117:6708–6716CrossRefGoogle Scholar
  39. 39.
    Creutz C, Schwarz HA, Wishart JF, Fujita E, Sutin N (1991) Thermodynamics and kinetics of carbon dioxide binding to two stereoisomers of a cobalt(I) macrocycle in aqueous solution. J Am Chem Soc 113:3361–3371CrossRefGoogle Scholar
  40. 40.
    Fujita E, Creutz N, Sutin N, Brunschwig BS (1993) Carbon dioxide activation by cobalt macrocycles. Evidence of hydrogen bonding between bound CO2 and the macrocycle in solution. Inorg Chem 32:2657–2662CrossRefGoogle Scholar
  41. 41.
    Fujita E, Furenlid LR, Renner MW (1997) Direct XANES evidence for charge transfer in Co–CO2 complexes. J Am Chem Soc 119:4549–4550CrossRefGoogle Scholar
  42. 42.
    Fujita E, van Eldik R (1998) Effect of pressure on the reversible binding of acetonitrile to the “Co(I)-CO2” adduct to form cobalt(III) carboxylate. Inorg Chem 37:360–362CrossRefGoogle Scholar
  43. 43.
    Schmidt MH, Miskelly GM, Lewis NS (1990) Effects of redox potential, steric configuration, solvent, and alkali metal cations on the binding of carbon dioxide to cobalt(I) and nickel(I) macrocycles. J Am Chem Soc 112:3420–3426CrossRefGoogle Scholar
  44. 44.
    Creutz C, Schwarz HA, Wishart JF, Fujita E, Sutin N (1989) A dissociative pathway for equilibration of a hydrido CoL(H)2+ complex with CO2 and CO: ligand binding constants in the macrocyclic [14]dienecobalt(I) system. J Am Chem Soc 111:1153–1154CrossRefGoogle Scholar
  45. 45.
    Fujita E, Wishart JF, van Eldik R (2002) Mechanistic information from pressure acceleration of hydride formation via proton binding to a cobalt(I) macrocycle. Inorg Chem 41:1579–1583CrossRefGoogle Scholar
  46. 46.
    Sasaki S (1992) An ab initio MO/SD-CI study of model complexes of intermediates in electrochemical reduction of CO2 catalyzed by NiCl2(cyclam). J Am Chem Soc 114:2055–2062CrossRefGoogle Scholar
  47. 47.
    Fujita E, Haff J, Sanzenbacker R, Elias H (1994) High electrocatalytic activity of RRSS-[NiIIHTIM](ClO4)2 and [NiIIDMC](ClO4)2 for carbon dioxide reduction (HTIM = 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradecane, DMC = C-meso-5,12-dimethyl-1,4,8,11-tetraazacyclotetradecane). Inorg Chem 33:4627–4628CrossRefGoogle Scholar
  48. 48.
    Gagné RR, Ingle DM (1981) One-electron-reduced nickel(II)-macrocyclic ligand complexes. Four-coordinate nickel(I) species and nickel(II)-ligand radical species which form paramagnetic, five-coordinate nickel(I) adducts. Inorg Chem 20:420–425CrossRefGoogle Scholar
  49. 49.
    Furenlid LR, Renner MW, Szalda DJ, Fujita E (1991) EXAFS studies of nickel(II), nickel(I), and Ni(I)-CO tetraazamacrocycles and the crystal structure of (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene)nickel(I) perchlorate. J Am Chem Soc 113:883–892CrossRefGoogle Scholar
  50. 50.
    Kelly CA, Mulazzani QG, Blinn EL, Rodgers MAJ (1996) Kinetics of CO addition to Ni(cyclam) + in aqueous solution. Inorg Chem 35:5122–5126CrossRefGoogle Scholar
  51. 51.
    Kelly CA, Mulazzani QG, Venturi M, Blinn EL, Rodgers MAJ (1995) The thermodynamics and kinetics of CO2 and H+ binding to Ni(cyclam) + in aqueous solution. J Am Chem Soc 117:4911–4919CrossRefGoogle Scholar
  52. 52.
    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658CrossRefGoogle Scholar
  53. 53.
    Doherty MD, Grills DC, Muckerman JT, Polyansky DE, Fujita E (2010) Toward more efficient photochemical CO2 reduction: use of scCO2 or photogenerated hydrides. Coord Chem Rev 254:2472–2482CrossRefGoogle Scholar
  54. 54.
    Agarwal J, Shaw TW, Stanton CJ III, Majetich GF, Bocarsly AB, Schaefer HF III (2014) NHC-containing manganese(I) electrocatalysts for the two-electron reduction of CO2. Angew Chem Int Ed 53:5152–5155CrossRefGoogle Scholar
  55. 55.
    Huang D, Holm RH (2010) Reactions of the terminal NiII–OH group in substitution and electrophilic reactions with carbon dioxide and other substrates: structural definition of binding modes in an intramolecular NiII···FeII bridged site. J Am Chem Soc 132:4693–4701CrossRefGoogle Scholar
  56. 56.
    Tinnemans AHA, Koster TPM, Thewissen DHMW, Mackor A (1984) Tetraaza-macrocyclic cobalt(II) and nickel(II) complexes as electron-transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide. Recl Trav Chim Pays-Bas 103:288–295CrossRefGoogle Scholar
  57. 57.
    Kelly CP, Cramer CJ, Trulher DG (2006) Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110:16066–16081CrossRefGoogle Scholar
  58. 58.
    Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135:14020–14023 and references to same authorsGoogle Scholar
  59. 59.
    Yan Y, Gu J, Bocarsly AB (2014) Hydrogen bonded pyridine dimer: a possible intermediate in the electrocatalytic reduction of carbon dioxide to methanol. Aerosol Air Qual Res 14:515–521Google Scholar
  60. 60.
    Aresta M, Dibenedetto A, Angelini A (2013) The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis. Philos Trans A Math Phys Eng Sci 371:20120111CrossRefGoogle Scholar
  61. 61.
    Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Utilization 3–4:65–73CrossRefGoogle Scholar
  62. 62.
    Dibenedetto A, Stufano P, Macyk W, Baran T, Fragale C, Costa M, Aresta M (2012) Hybrid technologies for an enhanced carbon recycling based on the enzymatic reduction of CO2 to methanol in water: chemical and photochemical NADH regeneration. ChemSusChem 5:373–378CrossRefGoogle Scholar
  63. 63.
    Baran T, Dibenedetto A, Aresta M, Kruczała K, Macyk W (2014) Photocatalytic carboxylation of organic substrates with carbon dioxide at zinc sulfide with deposited ruthenium nanoparticles. ChemPlusChem 79:708–715CrossRefGoogle Scholar
  64. 64.
    Aresta M, Dibenedetto A, Baran T, Angelini A, Łabuz P, Macyk W (2014) An integrated photocatalytic-enzymatic system for the reduction of CO2 to methanol in bio-glycerol-water. Beilstein J Org Chem 10:2556–2565CrossRefGoogle Scholar
  65. 65.
    Aresta M, Dibenedetto A, Macyk W (2015) Hybrid (enzymatic and photocatalytic) systems for CO2-water co-processing to afford energy rich molecules. In: Rozhkova EA, Ariga K (eds) From molecules to materials-pathways to artificial photosynthesis. Springer, V, 400 pGoogle Scholar
  66. 66.
    Aresta M, Dibenedetto A, Macyk W, Baran T (2013) Fotocatalizzatori per la riduzione nel visibile di NAD+ a NADH in un processo ibrido chemoenzimatico MI2013A001135Google Scholar
  67. 67.
    Kumar B, Llorente M, Froehlich J, Dang T, Satrum A, Kubiak CP (2012) Photochemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63:541–569CrossRefGoogle Scholar
  68. 68.
    Grodkowski J, Dhanasekaran T, Neta P, Hambright P, Brunschwig BS et al (2000) Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO2. J Phys Chem A 104:11332–11339CrossRefGoogle Scholar
  69. 69.
    Grodkowski J, Neta P (2000) Cobalt corrin catalyzed photoreduction of CO2. J Phys Chem A 104:1848–1853CrossRefGoogle Scholar
  70. 70.
    Hawecker J, Lehn J-M, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)3 2+-Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 9:536–538CrossRefGoogle Scholar
  71. 71.
    Ulman M, Tinnemans AHA, Mackor A, Aurian-Blajeni B, Halmann M (1982) Photoreduction of carbon dioxide to formic acid, formaldehyde, methanol, acetaldehyde and ethanol using aqueous suspensions of strontium titanate with transition metal additives. Int J Sol Energy 1(3):213–222CrossRefGoogle Scholar
  72. 72.
    Hawecker J, Lehn J-M, Ziessel R (1986) Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2,2′-bipyridine) tricarbonyl-chloro-rhenium(I) and related complexes as homogeneous catalysts. Helv Chim Acta 69:1990–2012CrossRefGoogle Scholar
  73. 73.
    Hori H, Johnson FPA, Koike K, Ishitani O, Ibusuki T (1996) Efficient photocatalytic CO2 reduction using [Re(bpy) (CO)3{P(OEt)3}]+. J Photochem Photobiol A Chem 96:171–174CrossRefGoogle Scholar
  74. 74.
    Jitaru M, Lowy DA, Toma M, Toma BC, Oniciu L (1997) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27:875–979CrossRefGoogle Scholar
  75. 75.
    Bradley MG, Tysak T, Graves DJ, Viachiopoulos NA (1983) Electrocatalytic reduction of carbon dioxide at illuminated p-type silicon semiconducting electrodes. J Chem Soc Chem Commun 7:349–350CrossRefGoogle Scholar
  76. 76.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRefGoogle Scholar
  77. 77.
    Zafrir M, Ulman M, Zuckerman Y, Halmann M (1983) Photoelectrochemical reduction of carbon dioxide to formic acid, formaldehyde and methanol on p-gallium arsenide in an aqueous V(II)-V(III) chloride redox system. J Electroanal Chem 159:373–389CrossRefGoogle Scholar
  78. 78.
    Arai T, Sato S, Uemura K, Morikawa T, Kajino T, Motohiro T (2010) Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex. Chem Commun 46:6944–6946CrossRefGoogle Scholar
  79. 79.
    Petit J-P, Chartier P, Beley M, Deville JP (1989) Molecular catalysts in photoelectrochemical cells: study of an efficient system for the selective photoelectroreduction of CO2: p-GaP or p-GaAs/Ni(cyclam)2+, aqueous medium. J Electroanal Chem 269:267–281CrossRefGoogle Scholar
  80. 80.
    Flaisher H, Tenne R, Halmann M (1996) Photoelectrochemical reduction of carbon dioxide in aqueous solutions on p-GaP electrodes: an a.c. impedance study with phase-sensitive detection. J Electroanal Chem 402(1–2):97–105CrossRefGoogle Scholar
  81. 81.
    Anfuso CL, Snoeberger RC, Ricks AM, Liu W, Xiao D et al (2011) Covalent attachment of a rhenium bipyridyl CO2 reduction catalyst to rutile TiO2. J Am Chem Soc 133:6922–6925CrossRefGoogle Scholar
  82. 82.
    Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344CrossRefGoogle Scholar
  83. 83.
    Bard AJ, Bocarsly AB, Fan FRF, Walton EG, Wrighton MS (1980) The concept of Fermi level pinning at semiconductor/liquid junctions: consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J Am Chem Soc 102:3671–3677CrossRefGoogle Scholar
  84. 84.
    Bocarsly AB, Bookbinder DC, Dominey RN, Lewis NS, Wrighton MS (1980) Photoreduction at illuminated p-type semiconducting silicon photoelectrodes: evidence for Fermi level pinning. J Am Chem Soc 102:3683–3688CrossRefGoogle Scholar
  85. 85.
    Soedergren S, Hagfeldt A, Olsson J, Lindquist S-E (1994) Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552–5556CrossRefGoogle Scholar
  86. 86.
    Saveant JM, Vianello E (1962) Potential-sweep chronoamperometry theory of kinetic currents in the case of a first order chemical reaction preceding the electron-transfer process. Electrochim Acta 8:905–923CrossRefGoogle Scholar
  87. 87.
    Aurian-Blajeni B, Taniguchi I, Bockris JOM (1983) Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon. J Electroanal Chem Interf Electrochem 149:291–293CrossRefGoogle Scholar
  88. 88.
    Ogura K, Yoshida I (1987) Electrocatalytic reduction of carbon dioxide to methanol. VI. Use of a solar cell and comparison with that of carbon monoxide. Electrochim Acta 32:1191–1195CrossRefGoogle Scholar
  89. 89.
    Ogura K, Yamada M, Nakayama M, Endo N (1998) Electrocatalytic reduction of CO2 to worthier compounds on a functional dual-film electrode with a solar cell as the energy source. Stud Surf Sci Catal 114:207–212CrossRefGoogle Scholar
  90. 90.
    Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc 132:2132–2133CrossRefGoogle Scholar
  91. 91.
    Schlager S (2013) Electrochemical reduction of CO2 with immobilized dehydrogenases enzymes, MRS Fall meeting and exhibition, Boston, MAGoogle Scholar
  92. 92.
    Yamane S, Kato N, Kojima S, Imanishi A, Ogawa S, Yoshida N, Nonomura S, Nakato Y (2009) Efficient solar water splitting with a composite n-Si/p.CuI/n-i-p a-Si/n-p GaP/RuO2 semiconductor electrode. J Phys Chem C 113:14575–14581CrossRefGoogle Scholar
  93. 93.
    Dang T, Ramsaran R, Roy S, Froehlich J, Wang J, Kubiac CP (2011) Design of a high-throughput 25-well parallel electrolyzer for the accelerated discovery of CO2 reduction catalysts via a combinatorial approach. Electroanalysis 23:2335–2342CrossRefGoogle Scholar
  94. 94.
    Yamada Y, Matsuki N, Ohmori T, Mametsuka H, Kondo M, Matsuda A, Suzuki E (2003) One chip photovoltaic water electrolysis device. Int J Hydrog Energy 28:1167–1169CrossRefGoogle Scholar
  95. 95.
    Nguyen TV, Wu JCS (2008) Photoreduction of CO2 in an optical fibres photo-bioreator: effects of metal addition and catalyst carrier. Appl Cat A 335:112–120CrossRefGoogle Scholar
  96. 96.
    Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742CrossRefGoogle Scholar
  97. 97.
    den Boef G (1977) Theoretische grondslagen van de analyse in waterige oplossingen, 4th edn. Elsevier, Amsterdam/BrusselGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chemical and Biomolecular Engineering DepartmentNUSSingaporeSingapore
  2. 2.CIRCCPisaItaly
  3. 3.Department of Chemistry and CIRCCUniversity of BariBariItaly

Personalised recommendations