Skip to main content

One- and Multi-electron Pathways for the Reduction of CO2 into C1 and C1+ Energy-Richer Molecules: Some Thermodynamic and Kinetic Facts

  • Chapter
Reaction Mechanisms in Carbon Dioxide Conversion

Abstract

This chapter deals with the mechanism of reduction of “free” and coordinated CO2 by electron transfer. One-e and multi-e transfer pathways are compared energetically and their role in the conversion of CO2 into higher energy C1 or C1+-species is highlighted. The state of the knowledge is presented through the analysis of reference cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89–99

    Article  CAS  Google Scholar 

  2. Schneider J, Jia H, Muckermana JT, Fujita E (2012) Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem Soc Rev 41:2036–2051

    Article  CAS  Google Scholar 

  3. Bolinger CM, Story N, Sullivam BP, Meyer TJ (1988) Electrocatalytic reduction of carbon dioxide by 2,2'-bipyridine complexes of rhodium and iridium. Inorg Chem 27:4582–4587

    Article  CAS  Google Scholar 

  4. Bruce MRM, Megehee E, Sullivan BP, Thorp H, O’Toole TR, Downard A, Meyer TJ (1988) Electrocatalytic reduction of carbon dioxide by associative activation. Organometallics 7:238–240

    Article  CAS  Google Scholar 

  5. Slater S, Wagenknecht JH (1984) Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl. J Am Chem Soc 106:5367–5368

    Article  CAS  Google Scholar 

  6. Tezuka M, Yajima T, Tsuchiya A, Matsumoto Y, Uchida Y, Hidai M (1982) Electroreduction of carbon dioxide catalyzed by iron-sulfur cluster compounds [Fe4S4(SR)4]2-. J Am Chem Soc 104:6834–6836

    Article  CAS  Google Scholar 

  7. Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M, Ishitani O (2005) Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium-rhenium bi- and tetranuclear complexes. Inorg Chem 44:2326–2336

    Article  CAS  Google Scholar 

  8. Gu J, Wuttig A, Krizan JW, Hu Y, Detweller ZM, Cava RJ, Bocarsly A (2013) Mg-doped CuFeO2 photocatalysts for photoelectrochemical reduction of carbon dioxide. J Phys Chem 117:12415–12422

    CAS  Google Scholar 

  9. Fisher B, Eisenberg R (1980) Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. J Am Chem Soc 102:7361–7363

    Article  CAS  Google Scholar 

  10. Beley M, Collin JP, Ruppert R, Sauvage JP (1984) Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of CO2 in water. J Chem Soc Chem Commun 1315–1316

    Google Scholar 

  11. Hammuche M, Lexa D, Momenteau M, Saveant JP (1991) Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron(“0”) porphyrins. Role of the addition of magnesium cations. J Am Chem Soc 113:8455–8466

    Article  Google Scholar 

  12. Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z (2002) Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J Phys Chem A 106:4772–4778

    Article  CAS  Google Scholar 

  13. Hawecker J, Lehn JM, Ziessel R (1984) Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2-bipyridine). J Chem Soc Chem Comm 328–330

    Google Scholar 

  14. Ishida H, Tanaka K, Tanaka T (1987) Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO-. Organometallics 6:181–186

    Article  CAS  Google Scholar 

  15. DuBois DL, Miedaner A, Haltiwanger RC (1991) Electrochemical reduction of carbon dioxide catalyzed by [Pd(triphosphine)(solvent)](BF4)2 complexes: synthetic and mechanistic studies. J Am Chem Soc 113:8753–8764

    Article  CAS  Google Scholar 

  16. Raebiger JW, Turner JW, Noll BC, Curtis CJ, Miedaner A, Cox B, DuBois DL (2006) Electrochemical reduction of CO2 to CO catalyzed by a bimetallic palladium complex. Organometallics 25:3345–3351

    Article  CAS  Google Scholar 

  17. Dubois DL (1997) Development of transition metal phosphine complexes as electrocatalysts for CO2 and CO reduction. Comments Inorg Chem 19:307–325

    Article  CAS  Google Scholar 

  18. DeLaet DL, Del Rosario R, Fanwick PE, Kubiak CP (1987) Carbon dioxide chemistry and electrochemistry of a binuclear cradle complex of nickel(0), Ni2(.mu-CNMe)(CNMe)2(PPh2CH2PPh2)2. J Am Chem Soc 109:754–758

    Article  CAS  Google Scholar 

  19. Morgenstern DA, Ferrence GM, Washington J, Henderson JI, Rosenhein L, Heise JD, Fanwick PE, Kubiak CP (1996) A class of halide-supported trinuclear nickel clusters [Ni3(m3-L)(m3-X)(m2-dppm)3]n + (L = I-, Br-, CO, CNR; X = I-, Br-; n = 0,1; dppm = Ph2PCH2PPh2): novel physical properties and the fermi resonance of symmetric m3-h1 bound isocyanide ligands. J Am Chem Soc 118:2198–2207

    Article  CAS  Google Scholar 

  20. Wittrig RE, Ferrence GM, Washington J, Kubiak CP (1998) Infrared spectroelectrochemical and electrochemical kinetics studies of the reaction of nickel cluster radicals [Ni32-dppm)33-L) (μ3I)]•(L = CNR, R = CH3, i-C3H7, C6H11, CH2C6H5, t-C4H9, 2,6-Me2C6H3; L = CO) with carbon dioxide. Inorg Chim Acta 270:111–117

    Article  CAS  Google Scholar 

  21. Ferrence GM, Fanwick PE, Kubiak CP (1996) A telluride capped trinuclear nickel cluster [Ni33-Te)2(μ-PPh2CH2PPh2)3]n+ with four accessible redox states (n=–1, 0, 1, 2). J Chem Soc Chem Commun 1575–1576

    Google Scholar 

  22. Haines RJ, Wittrig RE, Kubiak CP (1994) Electrocatalytic reduction of carbon dioxide by the binuclear copper complex [Cu2(6-(diphenylphosphino-2,2'-bipyridyl)2(MeCN)2][PF6]2. Inorg Chem 33:4723–4728

    Article  CAS  Google Scholar 

  23. Takeda H, Koike K, Inoue H, Ishitani O (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc 130:2023–2031

    Article  CAS  Google Scholar 

  24. Kumar B, Smieja JM, Kubiak CP (2010) Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J Phys Chem 114:14220–14223

    CAS  Google Scholar 

  25. Smieja JM, Sampson MD, Grice AF, Benson EE, Froehlich JD, Kubiak CP (2013) Manganese as substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg Chem 52:2484–2491

    Article  CAS  Google Scholar 

  26. Barton CE, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551

    Article  Google Scholar 

  27. Frese KW Jr, Canfield D (1984) Reduction of CO2 on n-GaAs electrodes and selective methanol synthesis. J Electrochem Soc 131:2518–2522

    Article  CAS  Google Scholar 

  28. Willner I, Maidan R, Mandler D, Durr H, Dorr G, Zengerle K (1987) Photosensitized reduction of CO2 to CH4 and H2 evolution in the presence of ruthenium and osmium colloids: strategies to design selectivity of products distribution. J Am Chem Soc 109:6080–6086

    Article  CAS  Google Scholar 

  29. Christophe J, Doneux T, Buess-Herman C (2012) Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper-alloys. Electrocatalysis 3:139–146

    Article  CAS  Google Scholar 

  30. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839

    Article  CAS  Google Scholar 

  31. Stephen H, Stephen T (eds) (1963) Solubilities of inorganic and organic compounds, vol 1, Binary systems, Part II. Pergamon, Oxford, pp 1057–1076

    Google Scholar 

  32. Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of CO2 under high pressure on various electrodes in aqueous electrolytes. J Electroanal Chem 391:141–147

    Article  Google Scholar 

  33. Hara K, Kudo A, Sakata T, Watanabe M (1995) High efficiency electrochemical reduction of carbon dioxide under high pressure on a gas diffusion electrode containing Pt catalysts. J Electrochem Soc 142:L57–L59

    Article  CAS  Google Scholar 

  34. Amatore C, Savéant J-M (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J Am Chem Soc 103:5021–5023

    Article  CAS  Google Scholar 

  35. Gangi DA, Durand RR Jr (1986) Binding of carbon dioxide to cobalt and nickel tetra-aza macrocycles. J Chem Soc Chem Commun 697–699

    Google Scholar 

  36. Fujita E, Creutz N, Sutin N, Szalda DJ (1991) Carbon dioxide activation by cobalt(I) macrocycles: factors affecting carbon dioxide and carbon monoxide binding. J Am Chem Soc 113:343–353

    Article  CAS  Google Scholar 

  37. Fujita E, Szalda DJ, Creutz N, Sutin N (1988) Carbon dioxide activation: thermodynamics of carbon dioxide binding and the involvement of two cobalt centers in the reduction of carbon dioxide by a cobalt(I) macrocycle. J Am Chem Soc 110:4870–4871

    Article  CAS  Google Scholar 

  38. Ogata T, Yanagida S, Brunshwig BS, Fujita E (1995) Mechanistic and kinetic studies of cobalt macrocycles in a photochemical CO2 reduction system: evidence of Co-CO2 adducts as intermediates. J Am Chem Soc 117:6708–6716

    Article  CAS  Google Scholar 

  39. Creutz C, Schwarz HA, Wishart JF, Fujita E, Sutin N (1991) Thermodynamics and kinetics of carbon dioxide binding to two stereoisomers of a cobalt(I) macrocycle in aqueous solution. J Am Chem Soc 113:3361–3371

    Article  CAS  Google Scholar 

  40. Fujita E, Creutz N, Sutin N, Brunschwig BS (1993) Carbon dioxide activation by cobalt macrocycles. Evidence of hydrogen bonding between bound CO2 and the macrocycle in solution. Inorg Chem 32:2657–2662

    Article  CAS  Google Scholar 

  41. Fujita E, Furenlid LR, Renner MW (1997) Direct XANES evidence for charge transfer in Co–CO2 complexes. J Am Chem Soc 119:4549–4550

    Article  CAS  Google Scholar 

  42. Fujita E, van Eldik R (1998) Effect of pressure on the reversible binding of acetonitrile to the “Co(I)-CO2” adduct to form cobalt(III) carboxylate. Inorg Chem 37:360–362

    Article  CAS  Google Scholar 

  43. Schmidt MH, Miskelly GM, Lewis NS (1990) Effects of redox potential, steric configuration, solvent, and alkali metal cations on the binding of carbon dioxide to cobalt(I) and nickel(I) macrocycles. J Am Chem Soc 112:3420–3426

    Article  CAS  Google Scholar 

  44. Creutz C, Schwarz HA, Wishart JF, Fujita E, Sutin N (1989) A dissociative pathway for equilibration of a hydrido CoL(H)2+ complex with CO2 and CO: ligand binding constants in the macrocyclic [14]dienecobalt(I) system. J Am Chem Soc 111:1153–1154

    Article  CAS  Google Scholar 

  45. Fujita E, Wishart JF, van Eldik R (2002) Mechanistic information from pressure acceleration of hydride formation via proton binding to a cobalt(I) macrocycle. Inorg Chem 41:1579–1583

    Article  CAS  Google Scholar 

  46. Sasaki S (1992) An ab initio MO/SD-CI study of model complexes of intermediates in electrochemical reduction of CO2 catalyzed by NiCl2(cyclam). J Am Chem Soc 114:2055–2062

    Article  Google Scholar 

  47. Fujita E, Haff J, Sanzenbacker R, Elias H (1994) High electrocatalytic activity of RRSS-[NiIIHTIM](ClO4)2 and [NiIIDMC](ClO4)2 for carbon dioxide reduction (HTIM = 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradecane, DMC = C-meso-5,12-dimethyl-1,4,8,11-tetraazacyclotetradecane). Inorg Chem 33:4627–4628

    Article  CAS  Google Scholar 

  48. Gagné RR, Ingle DM (1981) One-electron-reduced nickel(II)-macrocyclic ligand complexes. Four-coordinate nickel(I) species and nickel(II)-ligand radical species which form paramagnetic, five-coordinate nickel(I) adducts. Inorg Chem 20:420–425

    Article  Google Scholar 

  49. Furenlid LR, Renner MW, Szalda DJ, Fujita E (1991) EXAFS studies of nickel(II), nickel(I), and Ni(I)-CO tetraazamacrocycles and the crystal structure of (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene)nickel(I) perchlorate. J Am Chem Soc 113:883–892

    Article  CAS  Google Scholar 

  50. Kelly CA, Mulazzani QG, Blinn EL, Rodgers MAJ (1996) Kinetics of CO addition to Ni(cyclam) + in aqueous solution. Inorg Chem 35:5122–5126

    Article  CAS  Google Scholar 

  51. Kelly CA, Mulazzani QG, Venturi M, Blinn EL, Rodgers MAJ (1995) The thermodynamics and kinetics of CO2 and H+ binding to Ni(cyclam) + in aqueous solution. J Am Chem Soc 117:4911–4919

    Article  CAS  Google Scholar 

  52. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658

    Article  CAS  Google Scholar 

  53. Doherty MD, Grills DC, Muckerman JT, Polyansky DE, Fujita E (2010) Toward more efficient photochemical CO2 reduction: use of scCO2 or photogenerated hydrides. Coord Chem Rev 254:2472–2482

    Article  CAS  Google Scholar 

  54. Agarwal J, Shaw TW, Stanton CJ III, Majetich GF, Bocarsly AB, Schaefer HF III (2014) NHC-containing manganese(I) electrocatalysts for the two-electron reduction of CO2. Angew Chem Int Ed 53:5152–5155

    Article  CAS  Google Scholar 

  55. Huang D, Holm RH (2010) Reactions of the terminal NiII–OH group in substitution and electrophilic reactions with carbon dioxide and other substrates: structural definition of binding modes in an intramolecular NiII···FeII bridged site. J Am Chem Soc 132:4693–4701

    Article  CAS  Google Scholar 

  56. Tinnemans AHA, Koster TPM, Thewissen DHMW, Mackor A (1984) Tetraaza-macrocyclic cobalt(II) and nickel(II) complexes as electron-transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide. Recl Trav Chim Pays-Bas 103:288–295

    Article  CAS  Google Scholar 

  57. Kelly CP, Cramer CJ, Trulher DG (2006) Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110:16066–16081

    Article  CAS  Google Scholar 

  58. Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135:14020–14023 and references to same authors

    Google Scholar 

  59. Yan Y, Gu J, Bocarsly AB (2014) Hydrogen bonded pyridine dimer: a possible intermediate in the electrocatalytic reduction of carbon dioxide to methanol. Aerosol Air Qual Res 14:515–521

    CAS  Google Scholar 

  60. Aresta M, Dibenedetto A, Angelini A (2013) The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis. Philos Trans A Math Phys Eng Sci 371:20120111

    Article  Google Scholar 

  61. Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Utilization 3–4:65–73

    Article  Google Scholar 

  62. Dibenedetto A, Stufano P, Macyk W, Baran T, Fragale C, Costa M, Aresta M (2012) Hybrid technologies for an enhanced carbon recycling based on the enzymatic reduction of CO2 to methanol in water: chemical and photochemical NADH regeneration. ChemSusChem 5:373–378

    Article  CAS  Google Scholar 

  63. Baran T, Dibenedetto A, Aresta M, Kruczała K, Macyk W (2014) Photocatalytic carboxylation of organic substrates with carbon dioxide at zinc sulfide with deposited ruthenium nanoparticles. ChemPlusChem 79:708–715

    Article  CAS  Google Scholar 

  64. Aresta M, Dibenedetto A, Baran T, Angelini A, Łabuz P, Macyk W (2014) An integrated photocatalytic-enzymatic system for the reduction of CO2 to methanol in bio-glycerol-water. Beilstein J Org Chem 10:2556–2565

    Article  CAS  Google Scholar 

  65. Aresta M, Dibenedetto A, Macyk W (2015) Hybrid (enzymatic and photocatalytic) systems for CO2-water co-processing to afford energy rich molecules. In: Rozhkova EA, Ariga K (eds) From molecules to materials-pathways to artificial photosynthesis. Springer, V, 400 p

    Google Scholar 

  66. Aresta M, Dibenedetto A, Macyk W, Baran T (2013) Fotocatalizzatori per la riduzione nel visibile di NAD+ a NADH in un processo ibrido chemoenzimatico MI2013A001135

    Google Scholar 

  67. Kumar B, Llorente M, Froehlich J, Dang T, Satrum A, Kubiak CP (2012) Photochemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63:541–569

    Article  CAS  Google Scholar 

  68. Grodkowski J, Dhanasekaran T, Neta P, Hambright P, Brunschwig BS et al (2000) Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO2. J Phys Chem A 104:11332–11339

    Article  CAS  Google Scholar 

  69. Grodkowski J, Neta P (2000) Cobalt corrin catalyzed photoreduction of CO2. J Phys Chem A 104:1848–1853

    Article  CAS  Google Scholar 

  70. Hawecker J, Lehn J-M, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)3 2+-Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 9:536–538

    Article  Google Scholar 

  71. Ulman M, Tinnemans AHA, Mackor A, Aurian-Blajeni B, Halmann M (1982) Photoreduction of carbon dioxide to formic acid, formaldehyde, methanol, acetaldehyde and ethanol using aqueous suspensions of strontium titanate with transition metal additives. Int J Sol Energy 1(3):213–222

    Article  CAS  Google Scholar 

  72. Hawecker J, Lehn J-M, Ziessel R (1986) Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2,2′-bipyridine) tricarbonyl-chloro-rhenium(I) and related complexes as homogeneous catalysts. Helv Chim Acta 69:1990–2012

    Article  CAS  Google Scholar 

  73. Hori H, Johnson FPA, Koike K, Ishitani O, Ibusuki T (1996) Efficient photocatalytic CO2 reduction using [Re(bpy) (CO)3{P(OEt)3}]+. J Photochem Photobiol A Chem 96:171–174

    Article  CAS  Google Scholar 

  74. Jitaru M, Lowy DA, Toma M, Toma BC, Oniciu L (1997) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27:875–979

    Article  CAS  Google Scholar 

  75. Bradley MG, Tysak T, Graves DJ, Viachiopoulos NA (1983) Electrocatalytic reduction of carbon dioxide at illuminated p-type silicon semiconducting electrodes. J Chem Soc Chem Commun 7:349–350

    Article  Google Scholar 

  76. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  77. Zafrir M, Ulman M, Zuckerman Y, Halmann M (1983) Photoelectrochemical reduction of carbon dioxide to formic acid, formaldehyde and methanol on p-gallium arsenide in an aqueous V(II)-V(III) chloride redox system. J Electroanal Chem 159:373–389

    Article  CAS  Google Scholar 

  78. Arai T, Sato S, Uemura K, Morikawa T, Kajino T, Motohiro T (2010) Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex. Chem Commun 46:6944–6946

    Article  CAS  Google Scholar 

  79. Petit J-P, Chartier P, Beley M, Deville JP (1989) Molecular catalysts in photoelectrochemical cells: study of an efficient system for the selective photoelectroreduction of CO2: p-GaP or p-GaAs/Ni(cyclam)2+, aqueous medium. J Electroanal Chem 269:267–281

    Article  CAS  Google Scholar 

  80. Flaisher H, Tenne R, Halmann M (1996) Photoelectrochemical reduction of carbon dioxide in aqueous solutions on p-GaP electrodes: an a.c. impedance study with phase-sensitive detection. J Electroanal Chem 402(1–2):97–105

    Article  Google Scholar 

  81. Anfuso CL, Snoeberger RC, Ricks AM, Liu W, Xiao D et al (2011) Covalent attachment of a rhenium bipyridyl CO2 reduction catalyst to rutile TiO2. J Am Chem Soc 133:6922–6925

    Article  CAS  Google Scholar 

  82. Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344

    Article  CAS  Google Scholar 

  83. Bard AJ, Bocarsly AB, Fan FRF, Walton EG, Wrighton MS (1980) The concept of Fermi level pinning at semiconductor/liquid junctions: consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J Am Chem Soc 102:3671–3677

    Article  CAS  Google Scholar 

  84. Bocarsly AB, Bookbinder DC, Dominey RN, Lewis NS, Wrighton MS (1980) Photoreduction at illuminated p-type semiconducting silicon photoelectrodes: evidence for Fermi level pinning. J Am Chem Soc 102:3683–3688

    Article  CAS  Google Scholar 

  85. Soedergren S, Hagfeldt A, Olsson J, Lindquist S-E (1994) Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552–5556

    Article  CAS  Google Scholar 

  86. Saveant JM, Vianello E (1962) Potential-sweep chronoamperometry theory of kinetic currents in the case of a first order chemical reaction preceding the electron-transfer process. Electrochim Acta 8:905–923

    Article  Google Scholar 

  87. Aurian-Blajeni B, Taniguchi I, Bockris JOM (1983) Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon. J Electroanal Chem Interf Electrochem 149:291–293

    Article  CAS  Google Scholar 

  88. Ogura K, Yoshida I (1987) Electrocatalytic reduction of carbon dioxide to methanol. VI. Use of a solar cell and comparison with that of carbon monoxide. Electrochim Acta 32:1191–1195

    Article  CAS  Google Scholar 

  89. Ogura K, Yamada M, Nakayama M, Endo N (1998) Electrocatalytic reduction of CO2 to worthier compounds on a functional dual-film electrode with a solar cell as the energy source. Stud Surf Sci Catal 114:207–212

    Article  CAS  Google Scholar 

  90. Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc 132:2132–2133

    Article  CAS  Google Scholar 

  91. Schlager S (2013) Electrochemical reduction of CO2 with immobilized dehydrogenases enzymes, MRS Fall meeting and exhibition, Boston, MA

    Google Scholar 

  92. Yamane S, Kato N, Kojima S, Imanishi A, Ogawa S, Yoshida N, Nonomura S, Nakato Y (2009) Efficient solar water splitting with a composite n-Si/p.CuI/n-i-p a-Si/n-p GaP/RuO2 semiconductor electrode. J Phys Chem C 113:14575–14581

    Article  CAS  Google Scholar 

  93. Dang T, Ramsaran R, Roy S, Froehlich J, Wang J, Kubiac CP (2011) Design of a high-throughput 25-well parallel electrolyzer for the accelerated discovery of CO2 reduction catalysts via a combinatorial approach. Electroanalysis 23:2335–2342

    Article  CAS  Google Scholar 

  94. Yamada Y, Matsuki N, Ohmori T, Mametsuka H, Kondo M, Matsuda A, Suzuki E (2003) One chip photovoltaic water electrolysis device. Int J Hydrog Energy 28:1167–1169

    Article  CAS  Google Scholar 

  95. Nguyen TV, Wu JCS (2008) Photoreduction of CO2 in an optical fibres photo-bioreator: effects of metal addition and catalyst carrier. Appl Cat A 335:112–120

    Article  CAS  Google Scholar 

  96. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742

    Article  CAS  Google Scholar 

  97. den Boef G (1977) Theoretische grondslagen van de analyse in waterige oplossingen, 4th edn. Elsevier, Amsterdam/Brussel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aresta, M., Dibenedetto, A., Quaranta, E. (2016). One- and Multi-electron Pathways for the Reduction of CO2 into C1 and C1+ Energy-Richer Molecules: Some Thermodynamic and Kinetic Facts. In: Reaction Mechanisms in Carbon Dioxide Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46831-9_8

Download citation

Publish with us

Policies and ethics