Skip to main content

Carbon Dioxide Conversion in High Temperature Reactions

  • Chapter
Reaction Mechanisms in Carbon Dioxide Conversion

Abstract

This chapter deals with high temperature reactions in which carbon dioxide (CO2) is used either as dehydrogenation agent (“soft oxidant”) or hydrogen user (“reduction to other C1 molecules”). The first part of the chapter covers reactions such as the oxidative coupling of methane, the dehydrogenation of alkanes to olefins, the dehydrogenation of ethylbenzene to styrene, and, finally, CO2 reforming of methane.

The second part covers the reaction of CO2 with hydrogen in processes such as the reverse water gas shift reaction and the synthesis of both methanol and dimethyl ether.

All processes discussed here already have an industrial exploitation or are related to processes on stream, so that a large set of data is available in the literature. This chapter illustrates the building-up of knowledge for demonstrating the reaction mechanism in processes in which very often several conversion routes of CO2 coexist and the role of support and catalysts is essential for addressing the reaction in one or another direction.

Co-authored by Prof S. Kawi and Dr. Y. Kathiraser, ChBE Department, NUS, Singapore

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials and fuels. Technological use of CO2. Chem Rev 114:1709–1742

    CAS  Google Scholar 

  2. Styring P, Armstrong K (2011) Catalytic carbon dioxide conversions to value-added chemicals. Chem Today 29:28–31

    Google Scholar 

  3. Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A (2010) High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330:1797–1801

    CAS  Google Scholar 

  4. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727

    CAS  Google Scholar 

  5. Zou JJ, Liu CJ (2010) Utilization of carbon dioxide through nonthermal plasma approaches. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley, New York, pp 267–289

    Google Scholar 

  6. Aresta M, Dibenedetto A (2004) The contribution of the utilization option to reducing the CO2 atmospheric loading: research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use. Catal Today 98:455–462

    CAS  Google Scholar 

  7. Colmenares JC (2010) Novel trends in the utilization of CO2 as a reagent and mild oxidant in the C-C coupling reactions. Curr Org Synth 7:533–542

    CAS  Google Scholar 

  8. Tang P, Zhu Q, Wu Z, Ma D (2014) Methane activation: the past and future. Energy Environ Sci 7:2580–2591

    CAS  Google Scholar 

  9. Zaman J (1999) Oxidative processes in natural gas conversion. Fuel Process Technol 58:61–81

    CAS  Google Scholar 

  10. Corey EJ, Cheng XM (1989) The logic of chemical synthesis. Wiley, New York, pp P1–P456

    Google Scholar 

  11. Seshan K (2010) Oxidative conversion of lower alkanes to olefins. Catalysis 22:119–143

    CAS  Google Scholar 

  12. Wolf EE (ed) (1992) Methane conversion by oxidative processes: fundamental and engineering aspects. Van Nostrand Reinhold, New York, pp P1–P548

    Google Scholar 

  13. Ansari MB, Park SE (2012) Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ Sci 5:9419–9437

    CAS  Google Scholar 

  14. Dury F, Gaigneaux EM, Ruiz P (2003) The active role of CO2 at low temperature in oxidation processes: the case of the oxidative dehydrogenation of propane on NiMoO4 catalysts. Appl Catal Gen 242:187–203

    CAS  Google Scholar 

  15. Lunsford JH (1995) The catalytic oxidative coupling of methane. Angew Chem Int Ed 34:970–980

    CAS  Google Scholar 

  16. Dubois JL, Cameron CJ (1990) Common features of oxidative coupling of methane cofeed catalysts. Appl Catal 67:49–71

    CAS  Google Scholar 

  17. Choudhary VR, Mulla SAR, Uphade BS (1999) Oxidative coupling of methane over alkaline earth oxides deposited on commercial support precoated with rare earth oxides. Fuel 78:427–437

    CAS  Google Scholar 

  18. Palermo A, Vazquez JPH, Lee AF, Tikhov MS, Lambert RM (1998) Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane. J Catal 177:259–266

    CAS  Google Scholar 

  19. Pak S, Lunsford JH (1998) Thermal effects during the oxidative coupling of methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO catalysts. Appl Catal Gen 168:131–137

    CAS  Google Scholar 

  20. Wang D, Rosynek MP, Lunsford JH (1995) Oxidative coupling of methane over oxide-supported sodium-manganese catalysts. J Catal 155:390–402

    CAS  Google Scholar 

  21. Yu L, Hou R, Liu X, Xue J, Li S (1998) Performance of Na2WO4-Mn/SiO2 catalyst for conversion of CH4 with CO2 into C2 hydrocarbons and its mechanism. Stud Surf Sci Catal 119:307–311

    Google Scholar 

  22. Suzuki T, Wada K, Watanabe Y (1990) Effects of carbon dioxide and catalyst preparation on the oxidative dimerization of methane. Appl Catal 59:213–225

    CAS  Google Scholar 

  23. Tong Y, Rosynek MP, Lunsford JH (1990) The role of sodium carbonate and oxides supported on lanthanide oxides in the oxidative dimerization of methane. J Catal 126:291–298

    CAS  Google Scholar 

  24. Wang D, Xu M, Shi C, Lunsford JH (1993) Effect of carbon dioxide on the selectivities obtained during the partial oxidation of methane and ethane over Li+/MgO catalyst. Catal Lett 18:323–328

    CAS  Google Scholar 

  25. Wang Y, Ohtsuka Y (2001) Mn-based binary oxides as catalysts for the conversion of methane to C2 hydrocarbons with carbon dioxide as oxidant. Appl Catal Gen 219:183–193

    CAS  Google Scholar 

  26. Chen C, Xu Y, Li G, Guo X (1996) Oxidative coupling of methane by carbon dioxide: a highly C2 selective La2O3/ZnO catalyst. Catal Lett 42:149–153

    CAS  Google Scholar 

  27. Xu Y, Yu L, Guo X (1997) Effect of basicity and adding CO2 in the feed on the oxidative coupling of methane over K2O and SrO promoted La2O3/ZnO catalysts. Appl Catal Gen 164:47–57

    Google Scholar 

  28. Oshima K, Tanaka K, Yabe T, Kikuchi E, Sekine Y (2013) Oxidative coupling of methane using carbon dioxide in an electric field over La–ZrO2 catalyst at low external temperature. Fuel 107:879–881

    CAS  Google Scholar 

  29. Oumghar A, Legrand JC, Diamy AM, Turillon N (1995) Methane conversion by an air microwave plasma. Plasma Chem Plasma Process 15:87–107

    CAS  Google Scholar 

  30. Wang Y, Takahashi Y, Ohtsuka Y (1998) Carbon dioxide-induced selective conversion of methane to C2 hydrocarbons on CeO2 modified with CaO. Appl Catal Gen 172:L203–L206

    CAS  Google Scholar 

  31. Wang Y, Takahashi Y, Ohtsuka Y (1999) Carbon dioxide as oxidant for the conversion of ethane to ethane and ethylene using modified CeO2 catalysts. J Catal 186:160–168

    CAS  Google Scholar 

  32. Istadi I, Amin NAS (2006) Synergistic effect of catalyst basicity and reducibility on performance of ternary CeO2-based catalyst for CO2-OCM to C2 hydrocarbons. J Mol Catal A Chem 259:61–66

    CAS  Google Scholar 

  33. Sanderson RT (1960) Chemical periodicity. Physical and inorganic chemistry textbook series. Chapman & Hall, Reinhold

    Google Scholar 

  34. He Y, Yang B, Cheng G (2004) On the oxidative coupling of methane with carbon dioxide over CeO2/ZnO nanocatalysts. Catal Today 98:595–600

    CAS  Google Scholar 

  35. Aika K, Nishiyama T (1988) Utilisation of CO2 in the oxidative coupling of methane over PbO–MgO and PbO–CaO. J Chem Soc Chem Commun 1:70–71

    Google Scholar 

  36. Asami K, Kusakabe K, Ashi N, Ohtsuka Y (1997) Synthesis of ethane and ethylene from methane and carbon dioxide over praseodymium oxide catalysts. Appl Catal Gen 156:43–56

    CAS  Google Scholar 

  37. Raju G, Reddy BM, Park SE (2014) CO2 promoted oxidative dehydrogenation of n-butane over VO x /MO2–ZrO2 (M = Ce or Ti) catalysts. J CO2 Util 5:41–46

    Google Scholar 

  38. Urlan F, Marcu IC, Sandulescu I (2008) Oxidative dehydrogenation of n-butane over titanium pyrophosphate catalysts in the presence of carbon dioxide. Catal Commun 9:2403–2406

    CAS  Google Scholar 

  39. Qiao A, Kalevaru VN, Radnik J, Düvel A, Heitjans P, Hari Kumar AS, Sai Prasad PS (2014) Oxidative dehydrogenation of ethane to ethylene over V2O5/Al2O3 catalysts: effect of source of alumina on the catalytic performance. Ind Eng Chem Res. doi:10.1021/ie5008344

    Google Scholar 

  40. Cavaliere VN, Crestani MG, Pinter B, Pink M, Chen C, Baik M, Mindiola DJ (2011) Room temperature dehydrogenation of ethane to ethylene. J Am Chem Soc 133:10700–10703

    CAS  Google Scholar 

  41. Rangel MC, Monteiro APM, Oportus M, Reyes P, Ramos MS, Lima SB (2012) Ethylbenzene dehydrogenation in the presence of carbon dioxide over metal oxides. In: Liu G (ed) Greenhouse gases-capturing, utilization and reduction. In Tech, Rijeka, pp 117–136

    Google Scholar 

  42. Liu H, Zhang Z, Li H, Huang Q (2011) Intrinsic kinetics of oxidative dehydrogenation of propane in the presence of CO2 over Cr/MSU-1 catalyst. J Nat Gas Chem 20:311–317

    CAS  Google Scholar 

  43. Nakagawa K, Kajita C, Ikenaga NO, Gamo MN, Ando T, Suzuki T (2003) Dehydrogenation of light alkanes over oxidized diamond-supported catalysts in the presence of carbon dioxide. Catal Today 84:149–157

    CAS  Google Scholar 

  44. Raju G, Reddy BM, Abhishek B, Mo YH, Park SE (2012) Synthesis of C4 olefins from n-butane over a novel VO x /SnO2–ZrO2 catalyst using CO2 as soft oxidant. Appl Catal Gen 423–424:168–175

    Google Scholar 

  45. Grzybowska B (1997) Active centres on vanadia-based catalysts for selective oxidation of hydrocarbons. Appl Catal Gen 157:409–420

    Google Scholar 

  46. Solymosi F, Nemeth R, Oszko A (2001) The oxidative dehydrogenation of propane with CO2 over supported Mo2C catalyst. Stud Surf Sci Catal 136:339–344

    CAS  Google Scholar 

  47. Michorczyk P, Pietrzyk P, Ogonowski J (2012) Preparation and characterization of SBA-1–supported chromium oxide catalysts for CO2 assisted dehydrogenation of propane. Microporous Mesoporous Mater 161:56–66

    CAS  Google Scholar 

  48. Geske M, Korup O, Horn R (2013) Resolving kinetics and dynamics of a catalytic reaction inside a fixed bed reactor by combined kinetic and spectroscopic profiling. Catal Sci Technol 3:169–175

    CAS  Google Scholar 

  49. Sato S, Ohhara M, Sodesawa T, Nozaki F (1988) Combination of ethylbenzene dehydrogenation and carbon dioxide shift-reaction over a sodium oxide/alumina catalyst. Appl Catal 37:207–215

    CAS  Google Scholar 

  50. Deng S, Li H, Li S, Zhang Y (2007) Activity and characterization of modified Cr2O3/ZrO2 nano-composite catalysts for oxidative dehydrogenation of ethane to ethylene with CO2. J Mol Catal A Chem 268:169–175

    CAS  Google Scholar 

  51. Evans OR, Bell AT, Tilley TD (2004) Oxidative dehydrogenation of propane over vanadia-based catalysts supported on high-surface-area mesoporous MgAl2O4. J Catal 226:292–300

    CAS  Google Scholar 

  52. Collins SE, Baltanas MA, Bonivardi AL (2006) Infrared spectroscopic study of the carbon dioxide adsorption on the surface of Ga2O3 polymorphs. J Phys Chem B 110:5498–5507

    CAS  Google Scholar 

  53. Takehira K, Ohishi Y, Shishido T, Kawabata T, Takaki K, Zhang Q, Wang Y (2004) Behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO2. J Catal 224:404–416

    CAS  Google Scholar 

  54. Zhang X, Yue Y, Gao Z (2002) Chromium oxide supported on mesoporous SBA-15 as propane dehydrogenation and oxidative dehydrogenation catalysts. Catal Lett 83:19–25

    CAS  Google Scholar 

  55. Zhao X, Wang X (2006) Oxidative dehydrogenation of ethane to ethylene by carbon dioxide over Cr/TS-1 catalysts. Catal Commun 7:633–638

    CAS  Google Scholar 

  56. Mimura N, Okamoto M, Yamashita H, Oyama ST, Murata K (2006) Oxidative dehydrogenation of ethane over Cr/ZSM-5 catalysts using CO2 as an oxidant. J Phys Chem B 110:21764–21770

    CAS  Google Scholar 

  57. Liu L, Li H, Zhang Y (2007) Mesoporous silica-supported chromium catalyst: characterization and excellent performance in dehydrogenation of propane to propylene with carbon dioxide. Catal Commun 8:565–570

    CAS  Google Scholar 

  58. Weckhuysen BM, Schoonheydt RA (1999) Alkane dehydrogenation over supported chromium oxide catalysts. Catal Today 51:223–232

    CAS  Google Scholar 

  59. Cavani F, Koutyrev M, Trifiro F, Bartolini A, Ghisletti D, Iezzi R, Santucci A, Del Piero G (1996) Chemical and physical characterization of alumina-supported chromia-based catalysts and their activity in dehydrogenation of isobutene. J Catal 158:236–250

    CAS  Google Scholar 

  60. Botavina MA, Martra G, Agafonov YA, Gaidai NA, Nekrasov NV, Trushin DV, Coluccia S, Lapidus AL (2008) Oxidative dehydrogenation of C3–C4 paraffins in the presence of CO2 over CrO x /SiO2 catalysts. Appl Catal Gen 347:126–132

    CAS  Google Scholar 

  61. Shi X, Ji S, Wang K, Li C (2008) Oxidative dehydrogenation of ethane with CO2 over novel Cr/SBA-15/Al2O3/FeCrAl monolithic catalysts. Energy Fuel 22:3631–3638

    CAS  Google Scholar 

  62. Liu L, Li H (2006) A comparative study on catalytic performances of chromium incorporated and supported mesoporous MSU-x catalysts for the oxidehydrogenation of ethane to ethylene with carbon dioxide. Catal Today 115:235–241

    CAS  Google Scholar 

  63. Baek J, Yun HJ, Yun D, Choi Y, Yi J (2012) Preparation of highly dispersed chromium oxide catalysts supported on mesoporous silica for the oxidative dehydrogenation of propane using CO2: insight into the nature of catalytically active chromium sites. ACS Catal 2:1893–1903

    CAS  Google Scholar 

  64. Zhang W, Glomski B, Pauly TR, Pinnavaia TJ (1999) A new nonionic surfactant pathway to mesoporous molecular sieve silicas with long range framework order. Chem Commun 18:1803–1804

    Google Scholar 

  65. Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2018

    Google Scholar 

  66. Pak S, Qiu P, Lunsford JH (1998) Elementary reactions in the oxidative coupling of methane over Mn/Na2WO4/SiO2and Mn/Na2WO4/MgO catalysts. J Catal 179:222–230

    CAS  Google Scholar 

  67. Zhu J, Qin S, Ren S, Peng X, Tong D, Hu C (2009) Na2WO4/Mn/SiO2 catalyst for oxidative dehydrogenation of ethane using CO2 as oxidant. Catal Today 148:310–315

    CAS  Google Scholar 

  68. Blasco T, Nieto JML, Dejoz A, Vazaquez MI (1995) Influence of the acid–base character of supported vanadium catalysts on their catalytic properties for the oxidative dehydrogenation of n-butane. J Catal 157:271–282

    CAS  Google Scholar 

  69. Liu YM, Cao Y, Yi N, Feng WL, Dai WL, Yan SR, He HY, Fan KN (2004) Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane. J Catal 224:417–428

    CAS  Google Scholar 

  70. Madeira LM, Aranda RMM, Hodar FJM, Fierro JLG, Portela MF (1997) Oxidative dehydrogenation of n-butane over alkali and alkaline earth-promoted α-NiMoO4 catalysts. J Catal 169:469–479

    CAS  Google Scholar 

  71. Postole G, Chowdhury B, Pinki K, Banerji J, Auroux A (2010) Knoevenagel condensation reaction over acid–base bifunctional nanocrystalline CexZr1-xO2 solid solutions. J Catal 269:110–121

    CAS  Google Scholar 

  72. de Lima SM, da Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB (2008) Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst. J Catal 257:356–368

    Google Scholar 

  73. Karamullaoglu G, Dogu T (2007) Oxidative dehydrogenation of ethane over chromium − vanadium mixed oxide and chromium oxide catalysts. Ind Eng Chem Res 46:7079–7086

    CAS  Google Scholar 

  74. Solsona B, Blasco T, Nieto JML, Peña ML, Rey F, Vidal-Moya A (2001) Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes. J Catal 203:443–452

    CAS  Google Scholar 

  75. Michorczyk P, Kuśtrowski P, Kolak A, Zimowska M (2013) Ordered mesoporous Ga2O3 and Ga2O3–Al2O3 prepared by nanocasting as effective catalysts for propane dehydrogenation in the presence of CO2. Catal Commun 35:95–100

    CAS  Google Scholar 

  76. Michorczyk P, Ogonowski J (2003) Dehydrogenation of propane to propene over gallium oxide in the presence of CO2. Appl Catal Gen 251:425–433

    CAS  Google Scholar 

  77. Aresta M, Fragale C, Quaranta E, Tommasi I (1992) Carbon dioxide as modulator of the oxidative properties of dioxygen in the presence of transition metal systems. J Chem Soc Chem Commun 4:315–317

    Google Scholar 

  78. Chang JS, Vislovskiy VP, Park MS, Hong DY, Yoo JS, Park SE (2003) Utilization of carbon dioxide as soft oxidant in the dehydrogenation of ethylbenzene over supported vanadium–antimony oxide catalysts. Green Chem 5:587–590

    CAS  Google Scholar 

  79. Ge S, Liu C, Zhang S, Li Z (2003) Effect of carbon dioxide on the reaction performance of oxidative dehydrogenation of n-butane over V-Mg-O catalyst. Chem Eng J 94:121–126

    CAS  Google Scholar 

  80. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114(20):10613–10653

    CAS  Google Scholar 

  81. Solymosi F, Nemeth R (1999) The oxidative dehydrogenation of ethane with CO2 over Mo2C/SiO2 catalyst. Catal Lett 62:197–200

    CAS  Google Scholar 

  82. Lezla O, Bordes E, Courtine P, Hecquet G (1997) Synergetic effects in the Ni-Mo-O system: influence of preparation on catalytic performance in the oxidative dehydrogenation of propane. J Catal 170:346–356

    CAS  Google Scholar 

  83. Dury F, Centeno MA, Gaigneaux EM, Ruiz P (2003) An attempt to explain the role of CO2 and N2O as gas dopes in the feed in the oxidative dehydrogenation of propane. Catal Today 81:95–105

    CAS  Google Scholar 

  84. Blasco T, Nieto JML (1997) Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts. Appl Catal Gen 157:117–142

    CAS  Google Scholar 

  85. Chen KD, Khodakov A, Yang J, Bell AT, Iglesia E (1999) Isotopic tracer and kinetic studies of oxidative dehydrogenation pathways on vanadium oxide catalysts. J Catal 186:325–333

    CAS  Google Scholar 

  86. Xu B, Zheng B, Hua W, Yue Y, Gao Z (2006) Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts. J Catal 239:470–477

    CAS  Google Scholar 

  87. Chen M, Xu J, Su FZ, Liu YM, Cao Y, He HY, Fan KN (2008) Dehydrogenation of propane over spinel-type gallia–alumina solid solution catalysts. J Catal 256:293–300

    CAS  Google Scholar 

  88. Chen M, Xu J, Cao Y, He HY, Fan KN (2010) Dehydrogenation of propane over In2O3–Al2O3 mixed oxide in the presence of carbon dioxide. J Catal 272:101–108

    CAS  Google Scholar 

  89. Kathiraser Y, Wang Z, Yang NT, Zahid S, Kawi S (2013) Oxygen permeation and stability study of La0.6Sr0.4Co0.8Ga0.2O3-δ (LSCG) hollow fiber membrane with exposure to CO2, CH4 and He. J Membr Sci 427:240–249

    CAS  Google Scholar 

  90. Meriaudeau P, Naccache C (1990) The role of Ga2O3 and proton acidity on the dehydrogenating activity of Ga2O3-HZSM-5 catalysts: evidence of a bifunctional mechanism. J Mol Catal A Chem 59:L31–L36

    CAS  Google Scholar 

  91. Nakagawa K, Kajita C, Ikenaga N, Suzuki T, Kobayashi T, Gamo NN, Ando T (2003) The role of chemisorbed oxygen on diamond surfaces for the dehydrogenation of ethane in the presence of carbon dioxide. J Phys Chem B 107:4048–4056

    CAS  Google Scholar 

  92. Zheng B, Hua WM, Yue YH, Gao Z (2005) Dehydrogenation of propane to propene over different polymorphs of gallium oxide. J Catal 232:143–151

    CAS  Google Scholar 

  93. Cavani F, Trifiro F (1995) Alternative processes for the production of styrene. Appl Catal Gen 133:219–239

    CAS  Google Scholar 

  94. Wang S, Murata K, Hayakawa T, Suzuki K (2000) Dehydrogenation of ethane with carbon dioxide over supported chromium oxide catalysts. Appl Catal Gen 196:1–8

    CAS  Google Scholar 

  95. Peng X, Zhu J, Yao L, Hu C (2013) Effect of methane co-feeding on the selectivity of ethylene produced from oxidative dehydrogenation of ethane with CO2 over a Ni-La/SiO2 catalyst. J Energy Chem 22:653–658

    CAS  Google Scholar 

  96. Michorczyk P, Ogonowski J, Kustrowski P, Chmielarz L (2008) Chromium oxide supported on MCM-41 as a highly active and selective catalyst for dehydrogenation of propane with CO2. Appl Catal Gen 349:62–69

    CAS  Google Scholar 

  97. Michorczyk P, Ogonowski J, Zenczak K (2011) Activity of chromium oxide deposited on different silica supports in the dehydrogenation of propane with CO2—a comparative study. J Mol Catal A Chem 349:1–12

    CAS  Google Scholar 

  98. Ohishi Y, Kawabata T, Shishido T, Takaki K, Zhang Q, Wang Y, Takehira K (2005) Dehydrogenation of ethylbenzene with CO2 over Cr-MCM-41 catalyst. J Mol Catal A Chem 230:49–58

    CAS  Google Scholar 

  99. Deng S, Li S, Li H, Zhang Y (2009) Oxidative dehydrogenation of ethane to ethylene with CO2 over Fe-Cr/ZrO2 catalysts. Ind Eng Chem Res 48:7561–7566

    CAS  Google Scholar 

  100. Weckhuysen BM, Schoonheydt RA, Jehna JM, Wachs CSJ, Ryoo R, Kijlstra S, Poels E (1995) Combined DRS–RS–EXAFS–XANES–TPR study of supported chromium catalysts. J Chem Soc Faraday Trans 91:3245–3253

    CAS  Google Scholar 

  101. Lund CRF, Kubsh JE, Dumesic JA (1985) Water gas shift over magnetite-based catalysts: nature of active sites for adsorption and catalysis. In: Solid state chemistry in catalysis, Chap 19. American Chemical Society, Washington, DC, pp. 313–318

    Google Scholar 

  102. Castro AJR, Soares JM, Filho JM, Oliveira AC, Edwin AC, Milet RC (2013) Oxidative dehydrogenation of ethylbenzene with CO2 for styrene production over porous iron-based catalysts. Fuel 108:740–748

    CAS  Google Scholar 

  103. Liu BS, Rui G, Chang RZ, Au CT (2008) Dehydrogenation of ethylbenzene to styrene over LaVO x /SBA-15 catalysts in the presence of carbon dioxide. Appl Catal Gen 335:88–94

    CAS  Google Scholar 

  104. http://www.essentialchemicalindustry.org/polymers/polyphenylethene.html

    Google Scholar 

  105. http://www.plastemart.com/upload/literature/styrenics-styrene-business-further-restructuring-consolidation-merger.asp

    Google Scholar 

  106. Jiang N, Han DS, Park SE (2009) Direct synthesis of mesoporous silicalite-1 supported TiO2–ZrO2 for the dehydrogenation of EB to styrene with CO2. Catal Today 141:344–348

    CAS  Google Scholar 

  107. Devoldere KR, Froment GF (1999) Coke formation and gasification in the catalytic dehydrogenation of ethylbenzene. Ind Eng Chem Res 38:2626–2633

    CAS  Google Scholar 

  108. De Araujo JCS, Sousa CBA, Oliveira AC, Freire FNA, Ayala AP, Oliveira AC (2010) Dehydrogenation of ethylbenzene with CO2 to produce styrene over Fe-containing ceramic composites. Appl Catal Gen 377:55–63

    Google Scholar 

  109. Irún O, Sadosche SA, Lasobras J, Soler J, Francés E, Herguido J, Menéndez M (2013) Catalysts for the production of styrene from ethylbenzene: redox and deactivation study. Catal Today 203:53–59

    Google Scholar 

  110. Adams CR, Jennings TJ (1970) Catalytic oxidations with sulfur dioxide: II. Alkylaromatics. J Catal 17:157–177

    CAS  Google Scholar 

  111. Mimura N, Saito M (2000) Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide. Catal Today 55:173–178

    CAS  Google Scholar 

  112. Liao SJ, Chen T, Miao CX, Yang WM, Xie ZK, Chen QL (2008) Effect of TiO2 on the structure and catalytic behavior of iron–potassium oxide catalyst for dehydrogenation of ethylbenzene to styrene. Catal Commun 9:1817–1821

    CAS  Google Scholar 

  113. Mimura N, Saito M (1999) Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide. Catal Lett 58:59–62

    CAS  Google Scholar 

  114. Badstube T, Papp H, Kustrowski P, Dziembaj R (1998) Oxidative dehydrogenation of ethylbenzene with carbon dioxide on alkali‐promoted Fe/active carbon catalysts. Catal Lett 55:169–172

    CAS  Google Scholar 

  115. Ji M, Chen G, Wang J, Wang X, Zhang T (2010) Dehydrogenation of ethylbenzene to styrene with CO2 over iron oxide-based catalysts. Catal Today 158:464–469

    CAS  Google Scholar 

  116. Zhu XM, Schon M, Bartmann U, van Veen AC, Muhler A (2004) The dehydrogenation of ethylbenzene to styrene over a potassium-promoted iron oxide-based catalyst: a transient kinetic study. Appl Catal Gen 266:99–108

    CAS  Google Scholar 

  117. Wang Q, Li X, Li W, Feng J (2014) Promoting effect of Fe in oxidative dehydrogenation of ethylbenzene to styrene with CO2 (I) preparation and performance of Ce1 − xFexO2 catalyst. Catal Commun 50:21–24

    Google Scholar 

  118. Li KZ, Wang H, Wei YG, Yan DX (2009) Selective oxidation of carbon using iron-modified cerium oxide. J Phys Chem C 113:15288–15297

    CAS  Google Scholar 

  119. Reddy GK, Boolchand P, Smirniotis PG (2012) Unexpected behavior of copper in modified ferrites during high temperature WGS reaction—aspects of Fe3+ ↔ Fe2+ redox chemistry from Mössbauer and XPS studies. J Phys Chem C 116:11019–11031

    CAS  Google Scholar 

  120. Sakurai Y, Suzaki T, Ikenaga N, Suzuki T (2000) Dehydrogenation of ethylbenzene with an activated carbon-supported vanadium catalyst. Appl Catal Gen 192:281–288

    CAS  Google Scholar 

  121. Carja G, Nakamura R, Aida T, Niiyama H (2003) Mg–V–Al mixed oxides with mesoporous properties using layered double hydroxides as precursors: catalytic behavior for the process of ethylbenzene dehydrogenation to styrene under a carbon dioxide flow. J Catal 218:104–110

    CAS  Google Scholar 

  122. Li W, Li X, Feng J (2009) Behaviors of V-doped titanium mixed oxides in the catalytic dehydrogenation of ethylbenzene. Catal Lett 130:575–582

    CAS  Google Scholar 

  123. Rao KN, Reddy BM, Abishek B, Seo YH, Jiang N, Park SE (2009) Effect of ceria on the structure and catalytic activity of V2O5/TiO2–ZrO2 for oxidehydrogenation of ethylbenzene to styrene utilizing CO2 as soft oxidant. Appl Catal Environ 91:649–656

    CAS  Google Scholar 

  124. Burri A, Jiang N, Ji M, Park SE, Khalid Y (2013) Oxidative dehydrogenation of ethylbenzene to styrene with CO2 over V2O5–Sb2O5–CeO2/TiO2–ZrO2 catalysts. Top Catal 56:1724–1730

    CAS  Google Scholar 

  125. Reddy BM, Jin H, Han DS, Park SE (2008) Oxidative dehydrogenation of ethylbenzene to styrene with carbon dioxide over Fe2O3/TiO2–ZrO2 catalyst: influence of chloride. Catal Lett 124:357–363

    CAS  Google Scholar 

  126. Burri DR, Choi KM, Han SC, Burri A, Park SE (2007) Selective conversion of ethylbenzene into styrene over K2O/TiO2-ZrO2 catalysts: unified effects of K2O and CO2. J Mol Catal A Chem 269:58–63

    CAS  Google Scholar 

  127. Burri DR, Choi KM, Lee JH, Han DS, Park SE (2007) Influence of SBA-15 support on CeO2–ZrO2 catalyst for the dehydrogenation of ethylbenzene to styrene with CO2. Catal Commun 8:43–48

    CAS  Google Scholar 

  128. Qiao Y, Miao C, Yue Y, Xie Z, Yang W, Hua W, Gao Z (2009) Vanadium oxide supported on mesoporous MCM-41 as new catalysts for dehydrogenation of ethylbenzene with CO2. Microporous Mesoporous Mater 119:150–157

    CAS  Google Scholar 

  129. Sun A, Qin Z, Wang J (2002) Reaction coupling of ethylbenzene dehydrogenation with water-gas shift. Appl Catal Gen 234:179–189

    CAS  Google Scholar 

  130. Sun A, Qin Z, Chen S, Wang J (2004) Role of carbon dioxide in the ethylbenzene dehydrogenation coupled with reverse water–gas shift. J Mol Catal A Chem 210:189–195

    CAS  Google Scholar 

  131. Saito K, Okuda K, Ikenaga N, Miyake T, Suzuki T (2010) Role of lattice oxygen of metal oxides in the dehydrogenation of ethylbenzene under a carbon dioxide atmosphere. J Phys Chem A 114:3845–3854

    CAS  Google Scholar 

  132. Satterfield CN (1980) Heterogeneous catalysis in practice. McGraw-Hill, New York, pp P1–P460

    Google Scholar 

  133. Sakurai Y, Suzaki T, Nakagawa K, Ikenaga N, Aota H, Suzuki T (2002) Dehydrogenation of ethylbenzene over vanadium oxide-loaded MgO catalyst: promoting effect of carbon dioxide. J Catal 209:16–24

    CAS  Google Scholar 

  134. Chen S, Qin Z, Wang G, Dong M, Wang J (2013) Promoting effect of carbon dioxide on the dehydrogenation of ethylbenzene over silica-supported vanadium catalysts. Fuel 109:43–48

    CAS  Google Scholar 

  135. Liu ZW, Wang C, Fan WB, Liu ZT, Hao QQ, Long X, Lu J, Wang JG, Qin ZF, Su DS (2011) V2O5/ Ce0.6Zr0.4O2−Al2O3 as an efficient catalyst for the oxidative dehydrogenation of ethylbenzene with carbon dioxide. ChemSusChem 4:341–345

    CAS  Google Scholar 

  136. Baron M, Abbott H, Bondarchuk O, Stacchiola D, Uhl A, Shaikhutdinov S, Freund HJ, Popa C, Ganduglia-Pirovano MV, Sauer J (2009) Resolving the atomic structure of vanadia monolayer catalysts: monomers, trimers, and oligomers on ceria. Angew Chem Int Ed 121:8150–8153

    Google Scholar 

  137. Nederlof N, Talay G, Kapteijn F, Makkee M (2012) The role of RWGS in the dehydrogenation of ethylbenzene to styrene in CO2. Appl Catal Gen 423–424:59–68

    Google Scholar 

  138. He XX, Fan C, Gu XY, Zhou XG, Chen D, Zhu YA (2011) Role of CO2 in ethylbenzene dehydrogenation over Fe2O3(0 0 0 1) from first principles. J Mol Catal A Chem 344:53–61

    CAS  Google Scholar 

  139. Chang JS, Park SE, Park MS (1997) Beneficial effect of carbon dioxide in dehydrogenation of ethylbenzene to styrene over zeolite-supported iron oxide catalyst. Chem Lett 26:1123–1124

    Google Scholar 

  140. Broda M, Kierzkowska AM, Baudouin D, Imtiaz Q, Copéret C, Müller CR (2012) Sorbent-enhanced methane reforming over a Ni−Ca-based, bifunctional catalyst sorbent. ACS Catal 2:1635–1646

    CAS  Google Scholar 

  141. Choudhary VR, Mondal KC (2006) CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst. Appl Energy 83:1024–1032

    CAS  Google Scholar 

  142. Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev Sci Eng 41:1–42

    CAS  Google Scholar 

  143. Zhu X, Huo P, Zhang Y, Cheng D, Liu C (2008) Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. Appl Catal Environ 81:132–140

    CAS  Google Scholar 

  144. Liu CJ, Ye J, Jiang J, Pan Y (2011) Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem 3:529–541

    CAS  Google Scholar 

  145. Rostrup-Nielsen J, Trimm DL (1977) Mechanisms of carbon formation on nickel-containing catalysts. J Catal 48:155–165

    CAS  Google Scholar 

  146. Song C, Pan W (2004) Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal Today 98:463–484

    CAS  Google Scholar 

  147. Jiang HT, Li HQ, Zhang Y (2007) Tri-reforming of methane to syngas over Ni/Al2O3− thermal distribution in the catalyst bed. J Fuel Chem Technol 35:72–78

    CAS  Google Scholar 

  148. Rostrup-Nielsen J, Bak-Hansen JH (1993) CO2-reforming of methane over transition metals. J Catal 144:38–49

    CAS  Google Scholar 

  149. Bitter JH, Seshan K, Lercher JA (1999) Deactivation and coke accumulation during CO2/CH4 reforming over Pt catalysts. J Catal 183:336–343

    CAS  Google Scholar 

  150. Nagaoka K, Seshan K, Aika K, Lercher JA (2001) Carbon deposition during carbon dioxide reforming of methane—comparison between Pt/Al2O3 and Pt/ZrO2. J Catal 197:34–42

    CAS  Google Scholar 

  151. Gao J, Hou Z, Lou H, Zheng X (2011) Dry (CO2) reforming. In: Fuel cells: technologies for fuel processing, Chap. 7. Elsevier, Oxford, pp 191–221

    Google Scholar 

  152. Ruckenstein E, Hu YH (1996) Role of support in CO2 reforming of CH4 to syngas over Ni catalysts. J Catal 162:230–238

    CAS  Google Scholar 

  153. Pakhare D, Schwartz V, Abdelsayed V, Haynes D, Shekhawat D, Poston J, Spivey J (2014) Kinetic and mechanistic study of dry (CO2) reforming of methane over Rh-substituted La2Zr2O7 pyrochlores. J Catal 316:78–92

    CAS  Google Scholar 

  154. Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev. doi:10.1039/C3CS60395D

    Google Scholar 

  155. Hu YY, Ruckenstein E (2004) Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv Catal 48:297–345

    CAS  Google Scholar 

  156. Pan YX, Kuai P, Liu Y, Ge Q, Liu CJ (2010) Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst. Energy Environ Sci 3:1322–1325

    CAS  Google Scholar 

  157. Sutthiumporn K, Kawi S (2011) Promotional effect of alkaline earth over Ni–La2O3 catalyst for CO2 reforming of CH4: role of surface oxygen species on H2 production and carbon suppression. Int J Hydrogen Energy 36:14435–14446

    CAS  Google Scholar 

  158. Ni J, Chen L, Lin J, Kawi S (2012) Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4. Nano Energy 1:674–686

    CAS  Google Scholar 

  159. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41:8099–8139

    CAS  Google Scholar 

  160. Oemar U, Hidajat K, Kawi S (2011) Role of catalyst support over PdO–NiO catalysts on catalyst activity and stability for oxy-CO2 reforming of methane. Appl Catal Gen 402:176–187

    CAS  Google Scholar 

  161. Zhang J, Wang H, Dalai AK (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 249:300–310

    CAS  Google Scholar 

  162. Zhang J, Wang H, Dalai AK (2008) Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4. Appl Catal Gen 339:121–129

    CAS  Google Scholar 

  163. Tejuca LG, Fierro JLG, Tascón JMD, Tejuca LG (1989) Structure and reactivity of perovskite-type oxides. Adv Catal 36:237–328

    CAS  Google Scholar 

  164. Corthals S, Van Nederkassel J, Geboers J, De Winne H, Van Noyen J, Moens B, Sels B, Jacobs P (2008) Influence of composition of MgAl2O4 supported NiCeO2ZrO2 catalysts on coke formation and catalyst stability for dry reforming of methane. Catal Today 138:28–32

    CAS  Google Scholar 

  165. Sahli N, Petit C, Roger AC, Kiennemann A, Libs S, Bettahar MM (2006) Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane. Catal Today 113:187–193

    CAS  Google Scholar 

  166. Gallego GS, Mondragón F, Tatibouët JM, Barrault J, Batiot-Dupeyrat C (2008) Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor—characterization of carbon deposition. Catal Today 133–135:200–209

    Google Scholar 

  167. Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S (2012) CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8 M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): roles of lattice oxygen on C–H activation and carbon suppression. Int J Hydrogen Energy 37:11195–11207

    CAS  Google Scholar 

  168. Chen Y, Ren J (1994) Conversion of methane and carbon dioxide into synthesis gas over alumina-supported nickel catalysts, effect of Ni-Al2O3 interactions. Catal Lett 29:39–48

    CAS  Google Scholar 

  169. Wang S, Lu GQ (1998) Role of CeO2 in Ni/CeO2–Al2O3 catalysts for carbon dioxide reforming of methane. Appl Catal Environ 19:267–277

    Google Scholar 

  170. Bhattacharyya A, Chang VW (1994) CO2 reforming of methane to syngas: deactivation behavior of nickel aluminate spinel catalysts. Stud Surf Sci Catal 88:207–213

    CAS  Google Scholar 

  171. Kathiraser Y, Thitsartarn W, Sutthiumporn K, Kawi S (2013) Inverse NiAl2O4 on LaAlO3–Al2O3: unique catalytic structure for stable CO2 reforming of methane. J Phys Chem C 117:8120–8130

    CAS  Google Scholar 

  172. Pakhare D, Wu H, Narendra S, Abdelsayed V, Haynes D, Shekhawat D, Berry D, Spivey J (2013) Characterization and activity study of the Rh-substituted pyrochlores for CO2(dry) reforming of CH4. Appl Petrochem Res 3(3–4):117–129

    CAS  Google Scholar 

  173. Gaur S, Pakhare D, Wu H, Haynes DJ, Spivey JJ (2012) CO2 reforming of CH4 over Ru-substituted pyrochlore catalysts: effects of temperature and reactant feed ratio. Energy Fuels 26:1989–1998

    CAS  Google Scholar 

  174. Pakhare D, Shaw C, Haynes D, Shekhawat D, Spivey J (2013) Effect of reaction temperature on activity of Pt- and Ru-substituted lanthanum zirconate pyrochlores (La2Zr2O7) for dry (CO2) reforming of methane (DRM). J CO2 Util 1:37–42

    Google Scholar 

  175. Shinde VM, Madras G (2014) Catalytic performance of highly dispersed Ni/TiO2 for dry and steam reforming of methane. RSC Adv 4:4817–4826

    CAS  Google Scholar 

  176. Ligthart DAJM, Van Santen RA, Hensen EJM (2011) Influence of particle size on the activity and stability in steam methane reforming of supported Rh nanoparticles. J Catal 280:206–220

    CAS  Google Scholar 

  177. Schulz PG, Gonzales MG, Quincoces CE, Gigola CE (2005) Methane reforming with carbon dioxide. The behavior of Pd/γ-Al2O3 and Pd-CeOx/γ-Al2O3 catalysts. Ind Eng Chem Res 44:9020–9029

    CAS  Google Scholar 

  178. Corma A, Diaz U, Domine ME, Fornes V (2000) AlITQ-6 and TiITQ-6: synthesis, characterization, and catalytic activity. Angew Chem Int Ed 39:1499–1500

    CAS  Google Scholar 

  179. Corma A, Fornes V, Guil JM, Pergher S, Maesen Th LM, Buglass JG (2000) Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous Mesoporous Mater 38:301–309

    CAS  Google Scholar 

  180. Li Z, Mo L, Kathiraser Y, Kawi S (2014) Yolk–satellite–shell structured Ni–yolk@Ni@SiO2 nanocomposite: superb catalyst toward methane CO2 reforming reaction. ACS Catal 4:1526–1536

    CAS  Google Scholar 

  181. Baudouin D, Rodemerck U, Krumeich F, Mallmann AD, Szeto KC, Menard H, Veyre L, Candy JP, Webb PB, Thieuleux C, Copéret C (2013) Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. J Catal 297:27–34

    CAS  Google Scholar 

  182. Baudouin D, Szeto KC, Laurent P, Mallmann AD, Fenet B, Veyre L, Rodemerck U, Copéret C (2012) Nickel−silicide colloid prepared under mild conditions as a versatile Ni precursor for more efficient CO2 reforming of CH4 catalysts. J Am Chem Soc 134:20624–20627

    CAS  Google Scholar 

  183. Mo L, Leong KKM, Kawi S (2014) A highly dispersed and anti-coking Ni–La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane. Catal Sci Technol 4:2107.2114

    Google Scholar 

  184. Mark MF, Maier WF, Mark F (1997) Reaction kinetics of the CO2 reforming of methane. Chem Eng Technol 20:361–370

    CAS  Google Scholar 

  185. Tsipouriari VA, Verykios XE (2001) Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst. Catal Today 64:83–90

    CAS  Google Scholar 

  186. Ferreira-Aparicio P, Rodriguez-Ramos I, Anderson JA, Guerrero-Ruiz A (2000) Mechanistic aspects of the dry reforming of methane over ruthenium catalysts. Appl Catal Gen 202:183–196

    CAS  Google Scholar 

  187. Bitter JH, Seshan K, Lercher JA (2000) On the contribution of X-ray absorption spectroscopy to explore structure and activity relations of Pt/ZrO2 catalysts for CO2/CH4 reforming. Top Catal 10:295–305

    CAS  Google Scholar 

  188. Zhang Z, Verykios XE (1996) Mechanistic aspects of carbon dioxide reforming of methane to synthesis gas over Ni catalysts. Catal Lett 38:175–179

    CAS  Google Scholar 

  189. Wei J, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 24:370–383

    Google Scholar 

  190. Ferreira-Aparicio P, Fernandez-Garcia M, Guerrero-Ruiz A, Rodriguez-Ramos I (2000) Evaluation of the role of the metal–support interfacial centers in the dry reforming of methane on alumina-supported rhodium catalysts. J Catal 190:296–308

    CAS  Google Scholar 

  191. Li C, Yan W, Xin Q (1994) Interaction of methane with surface of alumina studied by FT-IR spectroscopy. Catal Lett 24:249–256

    CAS  Google Scholar 

  192. Solymosi F, Cserenyi J (1994) Decomposition of CH4 over supported Ir catalysts. Catal Today 21:561–569

    CAS  Google Scholar 

  193. Lisi L, Bagnasco G, Ciambelli P, De Rossi S, Porta P, Russo G, Turco M (1999) Perovskite-type oxides: II. Redox properties of LaMn1−x Cu x O3 and LaCo1−x Cu x O3 and methane catalytic combustion. J Solid State Chem 146:176–183

    CAS  Google Scholar 

  194. Zhang Z, Verykios XE, Macdonald SM, Affrossman S (1996) Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts. J Phys Chem 100:744–754

    CAS  Google Scholar 

  195. Munera JF, Irusta S, Cornaglia LM, Lombardo EA, Cesar DV, Schmal M (2007) Kinetics and reaction pathway of the CO2 reforming of methane on Rh supported on lanthanum-based solid. J Catal 245:25–34

    CAS  Google Scholar 

  196. Wang S, (Max) Lu GQ (1999) A comprehensive study on carbon dioxide reforming of methane over Ni/γ-Al2O3 catalysts. Ind Eng Chem Res 38:2615–2625

    CAS  Google Scholar 

  197. Ma J, Sun NN, Zhang XL, Zhao N, Mao FK, Wei W, Sun YH (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221–231

    CAS  Google Scholar 

  198. Inui T (1996) Highly effective conversion of carbon dioxide to valuable compounds on composite catalysts. Catal Today 29:329–337

    CAS  Google Scholar 

  199. Cheng D, Negreiros FR, Apra E, Fortunelli A (2013) Computational approaches to the chemical conversion of carbon dioxide. ChemSusChem 6:944–965

    CAS  Google Scholar 

  200. Chen CS, Wu JH, Lai TW (2010) Carbon dioxide hydrogenation on Cu nanoparticles. J Phys Chem C 114:15021–15028

    CAS  Google Scholar 

  201. Pekridis G, Kalimeri K, Kaklidis N, Vakouftsi E, Iliopoulou EF, Athanasiou C, Marnellos GE (2007) Study of the reverse water gas shift (RWGS) reaction over Pt in a solid oxide fuel cell (SOFC) operating under open and closed-circuit conditions. Catal Today 127:337–346

    CAS  Google Scholar 

  202. Liu XM, Lu GQ, Yan ZF, Beltramini J (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind Eng Chem Res 42:6518–6530

    CAS  Google Scholar 

  203. Mei DH, Xu LJ, Henkelman G (2008) Dimer saddle point searches to determine the reactivity of formate on Cu(111). J Catal 258:44–51

    CAS  Google Scholar 

  204. Olah GA (2013) Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52:104–107

    CAS  Google Scholar 

  205. Fujiwara M, Kieffer R, Ando H, Souma Y (1995) Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide. Appl Catal Gen 121:113–124

    CAS  Google Scholar 

  206. Fujiwara M, Kieffer R, Ando H, Xu Q, Souma Y (1997) Change of catalytic properties of **Fe–ZnO/zeolite composite catalyst in the hydrogenation of carbon dioxide. Appl Catal Gen 154:87–101

    CAS  Google Scholar 

  207. Lunev NK, Shmyrko YI, Pavlenko NV, Norton B (2001) Synthesis of iso-hydrocarbons mixture from CO2 and H2 on hybrid catalysts. Appl Organomet Chem 15:99–104

    CAS  Google Scholar 

  208. Raudaskoski R, Turpeinen E, Lenkkeri R, Pongrácz E, Keiski RL (2009) Catalytic activation of CO2: use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts. Catal Today 144:318–323

    CAS  Google Scholar 

  209. Yang C, Ma Z, Zhao N, Wei W, Hu T, Sun Y (2006) Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst. Catal Today 115:222–227

    CAS  Google Scholar 

  210. Zhang R, Wang B, Liu H, Ling L (2011) Effect of surface hydroxyls on CO2 hydrogenation over Cu/γ-Al2O3 catalyst: a theoretical study. J Phys Chem C 115:19811–19818

    CAS  Google Scholar 

  211. Olah GA, Goeppert A, Surya Prakash GK (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498

    CAS  Google Scholar 

  212. Kim IH, Kim S, Cho W, Yoon ES (2010) Simulation of commercial dimethyl ether production plant. Comput Aided Chem Eng 28:799–804

    CAS  Google Scholar 

  213. Chen WH, Lin BJ, Lee HW, Huang MN (2012) One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity. Appl Energy 98:92–101

    CAS  Google Scholar 

  214. Kang SW, Bae JW, Jun KW, Potdar HS (2008) Dimethyl ether synthesis from syngas over the composite catalysts of Cu–ZnO–Al2O3/Zr-modified zeolites. Catal Commun 9:2035–2039

    CAS  Google Scholar 

  215. Wang S, Mao D, Guo X, Wu G, Lu G (2009) Dimethyl ether synthesis via CO2 hydrogenation over CuO–TiO2–ZrO2/HZSM-5 bifunctional catalysts. Catal Commun 10:1367–1370

    CAS  Google Scholar 

  216. Pellegrini LA, Soave G, Gamba S, Lange S (2011) Economic analysis of a combined energy–methanol production plant. Appl Energy 88:4891–4897

    Google Scholar 

  217. Bonura G, Cordaro M, Spadaro L, Cannilla C, Arena F, Frusteri F (2013) Hybrid Cu–ZnO–ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation. Appl Catal Environ 140–141:16–24

    Google Scholar 

  218. Frusteri F, Cordaro M, Cannilla C, Bonura G (2015) Multifunctionality of Cu–ZnO–ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction. Appl Catal Environ 162:57–65

    CAS  Google Scholar 

  219. Gines MJL, Marchi AJ, Apesteguia CR (1997) Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts. Appl Catal Gen 154:155–171

    CAS  Google Scholar 

  220. Behrens M, Kisner S, Girsgdies F, Kasatkin I, Hermerschmidt F, Mette K, Ruland H, Muhler M, Schlӧgl R (2011) Knowledge-based development of a nitrate-free synthesis route for Cu/ZnO methanol synthesis catalysts via formate precursors. Chem Commun 47:1701–1703

    CAS  Google Scholar 

  221. Kaluza S, Behrens M, Schiefenhӧvel N, Kniep B, Fischer R, Schlӧgl R, Muhler M (2011) A novel synthesis route for Cu/ZnO/Al2O3 catalysts used in methanol synthesis: combining continuous consecutive precipitation with continuous aging of the precipitate. ChemCatChem 3:189–199

    CAS  Google Scholar 

  222. Gnanamani MK, Jacobs G, Pendyala VRR, Ma W, Davis BH (2014) Hydrogenation of carbon dioxide to liquid fuels. In: Centi G, Perathoner S (eds) Green carbon dioxide: advances in CO2 utilization, 1st edn. Wiley, New York, pp 99–118

    Google Scholar 

  223. Köppel RA, Stöcker C, Baiker A (1998) Copper- and silver–zirconia aerogels: preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide. J Catal 179:515–527

    Google Scholar 

  224. Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F (2007) Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J Catal 249:185–194

    CAS  Google Scholar 

  225. Rhodes MD, Pokrovski KA, Bell AT (2005) The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: part II. Transient-response infrared studies. J Catal 233:210–220

    CAS  Google Scholar 

  226. Schilke TC, Fisher IA, Bell AT (1999) In situ infrared study of methanol synthesis from CO2/H2 on titania and zirconia promoted Cu/SiO2. J Catal 184:144–156

    CAS  Google Scholar 

  227. Jung KT, Bell AT (2002) Effects of zirconia phase on the synthesis of methanol over zirconia-supported copper. Catal Lett 80:63–68

    CAS  Google Scholar 

  228. Arena F, Italiano G, Barbera K, Bonura G, Spadaro L, Frusteri F (2009) Basic evidences for methanol-synthesis catalyst design. Catal Today 143:80–85

    CAS  Google Scholar 

  229. Zha F, Tian H, Yan J, Chang Y (2013) Multi-walled carbon nanotubes as catalyst promoter for dimethyl ether synthesis from CO2 hydrogenation. Appl Surf Sci 285B:945–951

    Google Scholar 

  230. Zhang Y, Fei J, Yu Y, Zheng X (2006) Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified γ-Al2O3. Energy Convers Manag 47:3360–3367

    CAS  Google Scholar 

  231. Arena F, Spadaro L, Blasi OD, Bonura G, Frusteri F (2004) Integrated synthesis of dimethylether via CO2 hydrogenation. Stud Surf Sci Catal 147:385–390

    CAS  Google Scholar 

  232. Guo X, Mao D, Lu G, Wang S, Wu G (2010) Glycine–nitrate combustion synthesis of CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. J Catal 271:178–185

    CAS  Google Scholar 

  233. Pokrovski KA, Rhodes MD, Bell AT (2005) Effects of cerium incorporation into zirconia on the activity of Cu/ZrO2 for methanol synthesis via CO hydrogenation. J Catal 235:368–377

    CAS  Google Scholar 

  234. Pokrovski KA, Bell AT (2006) An investigation of the factors influencing the activity of Cu/Ce x Zr1−x O2 for methanol synthesis via CO hydrogenation. J Catal 241:276–286

    CAS  Google Scholar 

  235. Bonura G, Arena F, Mezzatesta G, Cannilla C, Spadaro L, Frusteri F (2011) Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction. Catal Today 171:251–256

    CAS  Google Scholar 

  236. Mo L, Kawi S (2014) An in situ self-assembled core–shell precursor route to prepare ultrasmall copper nanoparticles on silica catalysts. J Mater Chem A 2:7837–7844

    CAS  Google Scholar 

  237. Arena F, Mezzatesta G, Zafarana G, Trunfio G, Frusteri F, Spadaro L (2013) Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation. J Catal 300:141–151

    CAS  Google Scholar 

  238. Rodemerck U, Holena M, Wagner E, Smejkal Q, Barkschat A, Baerns M (2013) Catalyst development for CO2 hydrogenation to fuels. ChemCatChem 5:1948–1955

    CAS  Google Scholar 

  239. Baltes C, Vukojevic S, Schuth F (2008) Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J Catal 258:334–344

    CAS  Google Scholar 

  240. Yang G, Thongkam M, Vitidsant T, Yoneyama Y, Tan Y, Tsubaki N (2011) A double shell capsule catalyst with core-shell-like structure for one-step exactly controlled synthesis of dimethyl ether from CO2 containing syngas. Catal Today 171:229–235

    CAS  Google Scholar 

  241. Aguayo AT, Ereña J, Sierra I, Olazar M, Bilbao J (2005) Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2. Catal Today 106:265–270

    CAS  Google Scholar 

  242. Mao D, Xia J, Zhang B, Lu G (2010) Highly efficient synthesis of dimethyl ether from syngas over the admixed catalyst of CuO–ZnO–Al2O3 and antimony oxide modified HZSM-5 zeolite. Energy Convers Manag 51:1134–1139

    CAS  Google Scholar 

  243. Liu RW, Qin ZZ, Ji HB, Su TM (2013) Synthesis of dimethyl ether from CO2 and H2 using a Cu−Fe−Zr/HZSM‑5 catalyst system. Ind Eng Chem Res 52:16648–16655

    CAS  Google Scholar 

  244. An X, Zuo YZ, Zhang Q, Wang DZ, Wang JF (2008) Dimethyl ether synthesis from CO2 hydrogenation on a CuO−ZnO−Al2O3−ZrO2/HZSM-5 bifunctional catalyst. Ind Eng Chem Res 47:6547–6554

    CAS  Google Scholar 

  245. Zhang Q, Zuo YZ, Han MH, Wang JF, Jin Y, Wei F (2010) Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catal Today 150:55–60

    CAS  Google Scholar 

  246. Lim HW, Park MJ, Kang SH, Chae HJ, Bae JW, Jun KW (2009) Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: influence of carbon dioxide during hydrogenation. Ind Eng Chem Res 48:10448–10455

    CAS  Google Scholar 

  247. Fisher IA, Bell AT (1997) In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2. J Catal 172:222–237

    CAS  Google Scholar 

  248. Kakumoto T, Watanabe T (1997) A theoretical study for methanol synthesis by CO2 hydrogenation. Catal Today 36:39–44

    CAS  Google Scholar 

  249. Jansen WPA, Beckers J, Van Der Heuvel JC, Van der Gon AWD, Bliek A, Brongersma HH (2002) Dynamic behavior of the surface structure of Cu/ZnO/SiO2 catalysts. J Catal 210:229–236

    CAS  Google Scholar 

  250. Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Appl Catal Gen 138:311–318

    CAS  Google Scholar 

  251. Gao W, Wang H, Wang Y, Guo W, Jia M (2013) Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts. J Rare Earths 31:470–476

    CAS  Google Scholar 

  252. Zhang MH, Liu ZM, Lin GD, Zhang HB (2013) Pd/CNT-promoted Cu_ZrO2/HZSM-5 hybrid catalysts for direct synthesis of DME from CO2/H2. Appl Catal Gen 451:28–35

    CAS  Google Scholar 

  253. Lee SC, Jang JH, Lee BY, Kang MC, Kang M, Choung SJ (2003) The effect of binders on structure and chemical properties of Fe-K/γ-Al2O3 catalysts for CO2 hydrogenation. Appl Catal Gen 253:293–304

    CAS  Google Scholar 

  254. Chen CS, Cheng WH, Lin SS (2004) Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction. Appl Catal Gen 257:97–106

    CAS  Google Scholar 

  255. Ribeiro MC, Jacobs G, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2010) Fischer − Tropsch synthesis: an in-situ TPR-EXAFS/XANES investigation of the influence of Group I alkali promoters on the local atomic and electronic structure of carburized iron/silica catalysts. J Phys Chem C 114:7895–7903

    CAS  Google Scholar 

  256. Sun K, Lu W, Wang M, Xu X (2004) Low-temperature synthesis of DME from CO2/H2 over Pd-modified CuO-ZnO-Al2O3-ZrO2/HZSM-5 catalysts. Catal Commun 5:367–370

    CAS  Google Scholar 

  257. Riedel T, Schaub G, Jun KW, Lee KW (2001) Kinetics of CO2 hydrogenation on a K-promoted Fe catalyst. Ind Eng Chem Res 40:1355–1363

    CAS  Google Scholar 

  258. Dorner RW, Hardy DR, Williams FW, Davis BH, Willauer HD (2009) Influence of gas feed composition and pressure on the catalytic conversion of CO2 to hydrocarbons using a traditional cobalt-based Fischer − Tropsch catalyst. Energy Fuel 23:4190–4195

    CAS  Google Scholar 

  259. Riedel T, Claeys M, Schulz H, Schaub G, Nam SS, Jun KW, Choi MJ, Kishan G, Lee KW (1999) Comparative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts. Appl Catal Gen 186:201–213

    CAS  Google Scholar 

  260. Akin AN, Ataman M, Aksoylu AE, Onsan ZI (2002) CO2 fixation by hydrogenation over coprecipitated Co/Al2O3. React Kinet Catal Lett 76:265–270

    CAS  Google Scholar 

  261. Chang FW, Kuo MS, Tsay MT, Hsieh MC (2003) Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. Appl Catal Gen 247:309–320

    CAS  Google Scholar 

  262. Chang FW, Tsay MT, Liang SP (2001) Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange. Appl Catal Gen 209:217–227

    CAS  Google Scholar 

  263. Perkas N, Amirian G, Zhong ZY, Teo J, Gofer Y, Gedanken A (2009) Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides. Catal Lett 130:455–462

    CAS  Google Scholar 

  264. Ocampo F, Louis B, Roger AC (2009) Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol–gel method. Appl Catal Gen 369:90–96

    CAS  Google Scholar 

  265. Wang L, Zhang S, Liu Y (2008) Reverse water gas shift reaction over Co-precipitated Ni-CeO2 catalysts. J Rare Earths 26:66–70

    Google Scholar 

  266. Zonetti PC, Letichevsky S, Gaspar AB, Sousa-Aguiar EF, Appel LG (2014) The Ni x Ce0.75Zr0.25−x O2 solid solution and the RWGS. Appl Catal Gen 475:48–54

    CAS  Google Scholar 

  267. Mo L, Kawi S (2014) US Patent Application No: PCT/SG2014/000108

    Google Scholar 

  268. Coteron A, Hayhurst AN (1993) Methanol synthesis by amorphous copper-based catalysts prepared by spark-erosion. Appl Catal Gen 101:151–165

    Google Scholar 

  269. Sun Y, Sermon PA (1994) Evidence of a metal-support interaction in sol–gel derived Cu-ZrO2 catalysts for CO hydrogenation. Catal Lett 29:361–369

    CAS  Google Scholar 

  270. Ma Y, Sun Q, Wu D, Fan WH, Zhang YL, Deng JF (1998) A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation. Appl Catal Gen 171:45–55

    CAS  Google Scholar 

  271. Deng J, Sun Q, Zhang Y, Chen S, Wu D (1996) A novel process for preparation of a Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2 + H2: comparison of various preparation methods. Appl Catal Gen 139:75–85

    CAS  Google Scholar 

  272. Słoczynsky J, Grabowski R, Kozłowska A, Olszewski P, Stoch J, Skrzypek J, Lachowska M (2004) Catalytic activity of the M/(3ZnO · ZrO2) system (M = Cu, Ag, Au) in the hydrogenation of CO2 to methanol. Appl Catal Gen 278:11–23

    Google Scholar 

  273. Słoczynsky J, Grabowski R, Kozłowska A, Olszewski P, Lachowska M, Skrzypek J, Stoch J (2003) Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2. Appl Catal Gen 249:129–138

    Google Scholar 

  274. Raudaskoski R, Niemela MV, Keiski RL (2007) The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2. Top Catal 45:57–60

    CAS  Google Scholar 

  275. Guo X, Mao D, Lu G, Wang S, Wu G (2011) CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction. Catal Commun 12:1095–1098

    CAS  Google Scholar 

  276. Kenji U, Kozo M, Takeshi K, Taiki W, Masahiro S (2000) Methanol synthesis from CO2 and H2 in a bench-scale test plant. Appl Organomet Chem 14:819–825

    Google Scholar 

  277. Takeshi K, Itaru H, Hirotaka M, Kozo M, Kenji U, Taiki W, Masahiro S (2001) Kinetic study of methanol synthesis from carbon dioxide and hydrogen. Appl Organomet Chem 15:121–126

    Google Scholar 

  278. Fujita SI, Usui M, Takezawa N (1992) Mechanism of the reverse water gas shift reaction over Cu/ZnO catalyst. J Catal 134:220–225

    CAS  Google Scholar 

  279. Waugh KC (1992) Methanol synthesis. Catal Today 15:51–75

    CAS  Google Scholar 

  280. Shido T, Iwasawa Y (1993) The effect of coadsorbates in reverse water-gas shift reaction on ZnO, in relation to reactant-promoted reaction mechanism. J Catal 140:575–584

    CAS  Google Scholar 

  281. Herwijnen TV, Guczalski RT, Jong WA (1980) Kinetics and mechanism of the CO shift on CuZnO: II. Kinetics of the decomposition of formic acid. J Catal 63:94–101

    Google Scholar 

  282. Yoshihara J, Campbell CT (1996) Methanol synthesis and reverse water–gas shift kinetics over Cu(110) model catalysts: structural sensitivity. J Catal 161:776–782

    CAS  Google Scholar 

  283. Chen CS, Cheng WH, Lin SS (2003) Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst. Appl Catal Gen 238:55–67

    CAS  Google Scholar 

  284. Jung KD, Bell AT (2000) Role of hydrogen spillover in methanol synthesis over Cu/ZrO2. J Catal 193:207–223

    CAS  Google Scholar 

  285. Chinchen GC, Waugh KC, Whan DA (1986) The activity and state of the copper surface in methanol synthesis catalysts. Appl Catal 25:101–107

    CAS  Google Scholar 

  286. Melian-Cabrera I, Granados ML, Fierro JLG (2002) Reverse topotactic transformation of a Cu-Zn-Al catalyst during wet Pd impregnation: relevance for the performance in methanol synthesis from CO2/H2 mixtures. J Catal 210:273–284

    CAS  Google Scholar 

  287. Fujitani T, Nakamura I, Uchijima T, Nakamura J (1997) The kinetics and mechanism of methanol synthesis by hydrogenation of CO2 over a Zn-deposited Cu(111) Surface. Surf Sci 383:285–298

    CAS  Google Scholar 

  288. Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F (2008) Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Appl Catal Gen 350:16–23

    CAS  Google Scholar 

  289. Zhang R, Liu H, Wang B, Ling L (2012) Insights into the effect of surface hydroxyls on CO2 hydrogenation over Pd/-Al2O3 catalyst: a computational study. Appl Catal Environ 126:108–120

    CAS  Google Scholar 

  290. Collins SE, Baltanás MA, Bonivardi AL (2005) Mechanism of the decomposition of adsorbed methanol over a Pd/α, β-Ga2O3. Appl Catal Gen 295:126–133

    CAS  Google Scholar 

  291. Collins SE, Delgado JJ, Mira C, Calvino JJ, Bernal S, Chiavassa DL, Baltanás MA, Bonivardi AL (2012) The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst. J Catal 292:90–98

    CAS  Google Scholar 

  292. Collins SE, Baltanás MA, Bonivardi AL (2004) An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3. J Catal 226:410–421

    CAS  Google Scholar 

  293. Sun Q, Liu CW, Pan W, Zhu QM, Deng JF (1998) In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst. Appl Catal Gen 171:301–308

    CAS  Google Scholar 

  294. Bonura G, Cordaro M, Cannilla C, Aresta F, Frusteri F (2014) The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Appl Catal Environ 152–153:152–161

    Google Scholar 

  295. Verykios XE (2003) Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. Int J Hydrogen Energy 28:1045–1063

    CAS  Google Scholar 

  296. Dimethyl ether production technology. http://www.jcoal.or.jp/eng/cctinjapan/2_4A4.pdf

    Google Scholar 

  297. Kaeding WW (1974) Styrene monomer. Catal Rev 8:307–316

    Google Scholar 

  298. Ji M, Zhang X, Wang J, Park SE (2013) Ethylbenzene dehydrogenation with CO2 over Fe-doped MgAl2O4 spinel catalysts: synergy effect between Fe2+ and Fe3+. J Mol Catal A Chem 371:36–41

    CAS  Google Scholar 

  299. Badstube T, Papp H, Dziembaj R, Kustrowski P (2000) Screening of catalysts in the oxidative dehydrogenation of ethylbenzene with carbon dioxide. Appl Catal Gen 204:153–165

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aresta, M., Dibenedetto, A., Quaranta, E. (2016). Carbon Dioxide Conversion in High Temperature Reactions. In: Reaction Mechanisms in Carbon Dioxide Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46831-9_7

Download citation

Publish with us

Policies and ethics